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Abstract. An approximate expression is derived for the inelastic K-matrix elements for 
rotational excitation of molecules by electron impact. This expression incorporates a 
Born-Oppenheimer separation of the projectile and nuclear coordinates in the continuum 
wavefunction but allows for different energies in the entrance and exit channels. Hence 
it is particularly suited to near-threshold collisions. The method is applied to pure rotational 
excitation of H, by comparing approximate cross sections with those from laboratory frame 
close-coupling calculations. 

The calculation of cross sections for near-threshold rotational and vibrational excitation 
of molecules by electrons is plagued by practical problems. Beyond the need to include 
in the electron-molecule interaction potential accurate terms representing non-local 
effects such as exchange and correlation, difficulties beset the implementation of the 
collision theory itself. These difficulties essentially stem from the question: how 
accurately must one account for the influences on the scattering function of the nuclear 
dynamics ? 

These influences are (in principle) treated exactly in rovibrational laboratory frame 
close-coupling ( LFCC) theory (Arthurs and Dalgarno 1960, Henry 1970). The resulting 
computational scheme is, however, intractable for all but the simplest systems (see 
reviews by Lane (1980), Norcross and Collins (1982), and Morrison (1983)). For most 
molecules, a huge number of target states must be included in the target-state expansion 
even at low scattering energies, and extensive partial-wave coupling is induced by the 
highly non-spherical interaction potential. 

These difficulties are alleviated by the adiabatic-nuclei (AN)  approximation (Chase 
1956, Hara 1969), which is predicated on the assumption of separability (in the 
Born-Oppenheimer sense) of the projectile and nuclear motion (Shugard and Hazi 
1975). Since the AN scattering function depends only parametrically on the nuclear 
geometry, the effects of the nuclear Hamiltonian are absent from the scattering 
equations. The resulting computational and conceptual simplifications have made 
possible the study of low-energy rovibrational excitation for a large and diverse range 
of molecules (Rescigno et al 1982, Jain and Thompson 1983; see also Norcross and 
Collins (1982) and references therein). 

In addition to the Born-Oppenheimer separation of the continuum function, the 
AN method entails a further assumption: neglect of the separation between the initial- 
and final-state energies of the target. This is the assumption of target-state degeneracy. 
At the very least, this assumption will be invalid near the threshold for a given excitation. 
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Breakdown of the AN approximation has been anticipated since its introduction to 
electron-molecule scattering (Chang and Temkin 1970), and recent research on elec- 
tron-H, scattering has confirmed and quantified this expectation, showing that the AN 

approximation introduces errors of the order of 30% in cross sections for pure rotational 
excitation (Morrison et al 1984a), and of the order of hundreds of per cent in cross 
sections for pure vibrational and rovibrational excitation (Morrison et a1 1984b). 

These findings have lent urgency to the need for new scattering theories for 
near-threshold electron-molecule scattering-theories that preserve as many of the 
simplifying features of the AN method as possible without suffering its deficiencies 
near threshold. 

Shugard and Hazi (1975) first proposed that one might achieve this goal by venturing 
off the energy-momentum shell (see chapter 18 of Taylor (1972)). They suggested 
retaining the Born-Oppenheimer separation of the AN method but calculating an 
off -shell transition matrix, thereby avoiding the assumption of target-state degeneracy 
in the entrance andrexit channels. The particular method proposed by Shugard and 
Hazi has not, to date, been implemented; but several theories that go beyond the A N  

approximation have recently been introduced. These include the off -shell adiabatic 
theory of Varracchio and Lamanna (1984), which in lowest order leads to an integral 
equation for the off-shell T matrix; the multipole-extracted AN method of Norcross 
and Padial (1982), which is especially useful for scattering from polar molecules; the 
non-adiabatic theory of Domcke et a1 (1979), which has been extensively and success- 
fully applied to resonant scattering (another energy regime where the assumptions of 
the AN approximation are prone to break down); the scaled AN rotation theory of 
Feldt and Morrison (1984), which applies only to rotational excitation; the energy- 
modified adiabatic ( EMA) approximation of Nesbet (1977); and the vibrational frame- 
transformation theory of Greene and Jungen (1985). 

In this paper we present the formalism and first implementation of a first-order 
non-degenerate adiabatic ( FONDA) theory for rotational and vibrational excitation. 
The idea behind the FONDA method can be found in Chase’s original paper on the AN 

approximation, in which he first derives an approximate inelastic scattering amplitude 
which is accurate to first order in the perturbing Hamiltonian, by making an adiabatic 
separation of variables, and then obtains the usual AN scattering amplitude, which is 
accurate to second order, by imposing the assumption of target-state degeneracy. The 
FONDA method is essentially an adaptation of Chase’s first-order theory to the electron- 
molecule problem. 

A primary goal in developing the FONDA method was that the resulting expressions 
be computationally convenient, easily extensible to complicated systems and calculable 
in terms of the radial scattering functions of body frame fixed-nuclei theory. In the 
past two decades a vast amount of effort has gone into the study of these functions, 
their relation to the ‘physical’ scattering function in the laboratory frame (Chang and 
Fano 1972) and their numerical calculation via a variety of numerical methods (see 
the review by Buckley et a1 (1984)). The FONDA laboratory frame K matrix is calculated 
from these radial functions and other familiar coupling transformation matrices. It 
can then be fed into standard computer programs that compute differential and integral 
inelastic cross sections. In the first part of this letter we sketch the derivation of the 
FONDA K matrix. 

In the latter part we describe the application of this method to the comparatively 
simple and exhaustively studied problem of rotational excitation of H2 in the rigid- 
rotator approximation (see Lane (1980) and Shimamura (1984)). In particular, we 
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compare FONDA cross sections for this process with those from comparable LFCC 

calculations. 
We shall begin in the (space fixed) laboratory reference frame (LF),  denoting the 

spatial coordinates of the projectile by primes ( r ‘ ) ,  and will make the rigid-rotator 
approximation, fixing the internuclear separation R at its equilibrium value, Re = 
1.402 a, for Hz. Furthermore, we shall consider only electronically elastic scattering, 
within the ground (Born-Oppenheimer) electronic state of the target, X ‘2; for H1. 
After the electronic wavefunction for this state has been projected out of the time- 
independent Schrodinger equation of the system, there remains a ‘reduced’ equation 
for the scattering of an electron with initial momentum k, from a molecule in an initial 
rotational state vo = (j,, mjo), i.e. 

( F e +  Cnt+ k(r))Yb,vo(rf, R )  = E Y b , u o ( r f ,  P >  (1) 

where fe is the kinetic energy of tke projectile, the nuclear Hamiltonian is just the 
rotational kinetic energy operator 2Z(r1, and V,,, is the electron-molecule interaction 
potential averaged over the X ‘Xi wavefunction. In general, Rnt includes static (non- 
local) exchange, and polarisation terms, the latter to compensate for our jettisoning 
of the closed electronic channels from the Hilbert space of the problem. (We have 
suppressed the dependence on R throughout.) In equation (1) E is the total energy: 

E = i k ; + ~ ~ , = ; k j + ~ ~  (2) 

where ej is the Born-Oppenheimer energy of the target in state v. In terms of the 
rotational constant of the ground state, Bx = 60.80 cm-’ for H2 (Herzberg 1950), 
this energy is simply 

= &iZ: j ( j +  1). (3)  

Equation (3) also defines the ctannel energies bkf. 
The wavefunction Y b,uo( r’, R )  of (1) satisfies plane-wave boundary conditions with 

initial momentum k,. It is convenient to introduce a function that identifies with the 
entrance channel a particular orbital angular momentum state of the projectile \ l o ,  m,), 
where lo corresponds to the square of the orbital angular momentum operator l, and 
m, to its projection on the space fixed z axis &, This wavefunction is related to 
Yb,uo( r ’ ,  R )  by the transformation matrix between plane-wave and angular momentum 
eigenfunctionst, i.e. 

Ultimately we shall couple the orbital and rotational angular momenta, I and j ,  to 
derive a scattering matrix in the coupled-angular-momentum representation. However, 
the derivation of the FONDA equations is considerably clearer in the uncoupled angular 
momentum ( UCAM) representation of equation (4). In this representation asymptotic 
channels will be labelled by the index y =  ( j ,  mj,  l, m) .  

We begin with the integral equation for the reactance matrix K in the UCAM 

representation. This matrix is derived (Taylor 1972) by transforming into integral form 

t The transformation matrix used in this equation corresponds to plane waves that obey Dirac delta function 
normalisation but to angular momentum free waves that are not energy normalised. See equation (8)  and 
chapter 1 1  of Taylor (1972). 
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the coupled radial differentifl scattering equations that result from expanding first the 
wavefunction 9 E,vo , lo ,mo(  r’, R )  in target (rotational) states bmj): 

and then the scattering functions 7 v,uo( r’) in partial waves I Im): 

The LF UCAM radial functions u ~ , ~ , (  r )  are coupled by the matrix elements 

where the implied integration is over d i ’  and dR. Thus our starting point is 
VY,J  r )  = (jmjlm/ Pint/j’m;Ifm’) ( 6 )  

where yl( k,r) is the Ricatti-Bessel function. 
Formally, we want to approximate the system wavefunction 9E,vo,lo,mo( r’, R ) ,  in 

which the projectile and target coordinates are rigorously non-separable, by the product 
of an adiab!tic electronic function p1,,,,,,,(r‘; f i ) ,  which depends on the internuclear 
orient:tion R only parametrically, and a target function for the initial rotational state 
Y,To(R). To clarify how this replacement is implemented in equation (7) we first 
rewrite this equation in terms of the asymptotic free wavefunctions 

A 

4$,(rr; IC,) = r - ’ f1(k , r )  ~ ~ ( j l )  (8) 
and then evaluate the sums over I’ and m‘ implied by E,. in equation (7),  obtaining 

Now, the summation in brackets in (9) is, according to equation ( 5 a ) ,  the system 
wavefunction 9 E,vo,lo,mo( r’, io); this sum explicitly exhibits the coupling of the nuclear 
dynamics to the motion of the projectile. So we replace this summation with the 
product of the laboratory frame, fixed-nuclei (:F-FN) scattering function Promo( r’; f i )  
and the initial target-state wavefunction Y,.O(R), i.e. 

Making this substitution in the integral equation (7) and expanding plomo(r’; k )  in 
partial waves, we obtain the UCAM K matrix in the FONDA approximation, i.e. 

X (  I ’m’ drd?i(kjr)Yr*(?)pint(r’,  R ) ~ l ~ m ~ , I o m o ( r ,  k , ) Y ~ ’ ( ? ) Y ~ o ( d ) ) .  

(11) 
We have appended a label k,  to the (adiabatic) LF-FN radial functions iil,m~.lomo(r, ko) 
to emphasise that they are to be evaluated at the entrance channel energy fkg. The 
supzrscript (1) on the K matrix (1 1) connotes that this expresion is valid to first order 
in 
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Were we to impose on Xv;o the additional assumption that the entrance and exit 
channel energies are equal, setting kj = k,, equation ( 1 1 )  would reduce to the usual 
AN K matrix in the LF-UCAM representation (Lane 1980), which is accurate to second 
order in %".' (Chase 1956). We shall not, however, do this. 

Instead, we shall express the FONDA K matrix ( 1 1 )  in a form convenient for 
computation by transforming to the coupled angular momentum (CAM) representation 
and writing the resulting matrix in terms of FN radial scattering functions in the body 
frame. The body frame ( BF), in which coordinates will be unprimed ( r ) ,  is obtained 
from the LF by a rotation thJough Euler angles chosen to align the body polar axis i?z 
with the internuclear axis R. In the body representation, with the nuclear geometry 
frozen, channels are labelled by the quantum numbers 1 and A, the latter corresponding 
to the projection 1 R. (Because ,5@".' has been 'frozen out' of the B F  scattering equations 
by the FN approximation in this derivation, these channels are not coupled in A.) 

The BF-FN radial scattering equations are solutions of the coupled equations 

The coupling matrix elements are 

A 

where v A ( r )  is the expansion coefficient of Cnt in Legendre polynomials and the 
coupling coefficient g A ( l l ' ;  A) is given by 

21'+ 1 
gA(ZZ'; A) = (,,+,) - C(l'A1; AO)C(/'Al; 00) 

where C ( j l j 2 j 3 ;  m l m J  is a Clebsch-Gordan coefficient. 
In equation (12), i k i  is the body energy-the energy at which the BF-FN scattering 

equations are solved. The essential ambiguity of the AN procedure is that once the 
target states have been divorced from the scattering function, through the assumption 
of target-state degeneracy, the definition of the body energy becomes ambiguous. 
Various choices for this energy have been suggested, e.g. the entrance- or exit-channel 
energies (Chase (1956) and Chang and Temkin (1970), respectively) and their geometric 
mean (Nesbet 1977, Norcross and Padial 1982). The FONDA method, like other off-shell 
theories, prescribes an unambiguous definition of the body energy: according to ( 1  l ) ,  
we choose kb = k,. 

The BF-FN radial functions wtl,,(r, ko) are related to the LF-FN functions 
I j l , m ~ , l o m o (  r, ko) in ( 1  1 )  via the Wigner rotation matrices, i.e. 

A 

To derive the desired simple form for the FONDA K matrix in the CAM representation, 
we insert (15) into the integral equation ( 1 1 )  and then couple the rotational orbital 
angular momenta via the unitary transformation 

where, of course, mj + m = mjo+ m0. 
There remains only to express the resulting K-matrix elements in as simple a form 

as possible. These final steps consist of tedious but straightforward applications of 
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standard angular momentum coupling theory (Rose 1957) and will not be reproduced 
here. The final result can be written in terms of the coupling coefficient gA(11’; A )  of 
equation (14), the matrix element of the rotational frame transformation (Chang and 
Fano 1972, Lane 1980) 

and radial integrals 

dryl( k,r)vA ( r)wC,lo( r, ko) 

i.e. 

From this K matrix we calculate the FONDA approximation to the LF CAM T matrix 
and then, using the standard formulae of LFCC theory (Arthurs and Dalgarno 1960, 
Lane 1980), evaluate the integral and differential cross sections for rotational excitation. 

Several points about equation (19) are worth noting. Firstly, the FONDA approxima- 
tion ensures that the scattering wavefunction in the entrance channel is evaluated at 
the incident (initial-state) energy Ski and the free wave in the exit channel at the 
final-state energy tk:. Secondly, as a check on the algebra leading to this equation, 
we can apply the further approximation of target-state degeneracy, k, = ko = kb, 
whereupon equation (19) reduces to 

xYI,JoIo = 1 AY;K (20) 
A 

where K &  is 

Equation (21) is just the integral equation for the BF-FN K matrix evaluated at the 
body energy i k ; ,  so (20) is the usual adiabatic nuclear rotation (ANR) result that is 
obtained (Lane 1980) when this matrix is expressed in the laboratory CAM representation 
via the rotational frame transformation (17). 

The static, exchange and polarisation components of the e-H, interaction potential 
are identical to those used in our earlier study of the ANR theory for this system 
(Morrison et al 1984a). The static potential is calculated using standard computer 
programs (Morrison 1980, Collins et al 1980) that average the bound-free Coulomb 
interactions over the ground electronic state of the target. The wavefunction for this 
state was calculated in the Hartree-Fock approximation using a (5s2p/3s2p) basis 
(Huzinaga 1965) of contracted nucleus-centred Gaussian type orbitals. 

The resulting equilibrium X ‘ Z l  charge density was used to calculate the exchange 
potential, which is modelled by a local, energy-dependent ‘tuned’ free electron gas 
exchange potential (Weitzel et a1 1983) that was optimised for the study of rotational 
and vibrational excitation (Morrison et a1 1984b). 

The aforementioned basis is augmented by diffuse functions to obtain the basis for 
calculation of the polarisation potential used in this work. A detailed description of 
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this potential has been given by Gibson and Morrison (1984). Suffice it to say here 
that this model potential is based on a variational calculation of the energy lowering 
of the molecule due to the electric field of the projectile. This potential incorporates 
non-adiabatic effects using the non-penetrating approximation of Temkin (1957). 

The integrals I ;A(  ll,; k j )  were evaluated using a Numerov integrator (Hartree 1957) 
out to 50.0 a, with a mesh chosen to guarantee convergence to better than 1 O h .  The 
remainder of this integral, from 50.0 a, to infinity, was calculated using the Born 
approximation, as described in 0 1V.A of Morrison et a1 (1984a). In equation (19) the 
maximum values of the summation indices were: A = 2, I ’  = 6(5) for gerade (ungerade) 
symmetries, and A = 8. In calculating cross sections ujo+j the maximum value of the 
total angular momentum quantum number was J = 3. 

Integral FONDA cross sections for& = O+j = 2 and j ,  = 1 + j  = 3 are shown in figure 
1, where they are compared with their LFCC counterparts and with cross sections 
determined using the ANR method. The sharp decrease in ujo+j as threshold is 
approached makes it difficult to appraise the FONDA cross sections in this critical 
region. Hence in figure 2 we show the percentage difference of approximate cross 
sections from LFCC results. In addition to the FONDA and ANR percentages, these 
figures include comparisons with an implementation of the energy modified adiabatic 
(EMA) approximationt. Unlike the ANR cross sections in figure 1, those used to calculate 
the percentages in figure 2 have been ‘corrected’-i.e., forced to go to zero at threshold- 
via the ad hoc strategy of multiplying by the ratio k j / k ,  (Chang and Temkin 1969). 
Adiabatic-nuclei cross sections calculated without this correction (figure 1) deviate 
from LFCC cross sections by far more than is indicated in figure 2. For example, at 
47 meV the ‘pure’ ANR is in error by 414%, while the ‘corrected’ cross section is 
in error by 28%. 

Figures 1 and 2 show that the FONDA is capable of producing accurate integrated 
cross sections even very near threshold (e.g., the FONDA cross section for O+ 2 at 3 meV 

lo-’ 1 10 lo+ lo-’ 1 10 
1 , , , , , , , , ,  , , ~  , , , , , ,  ~ , , , , ,  I, , , , , ,  , , , , , , , ,  , , , , , , , I  

10-2 10-2 , I 8 ,  

lo+ 
Energy lev) 

Figure 1. Integral cross sections for rotational excitations (a )  j o  = 0- j = 2 and (6) jo  = 1 - 
j = 3 of H, .  -, LFCC; - - -, ANR;  *, FONDA. On each graph the thresholds for these 
excitations, (a)  44 .1  meV and ( b )  73.5 meV, are shown as broken lines. 

t Our implementation of the EMA method entails simply calculating w;,o(r, k b )  at kb = (kjko)”*;  this is not 
a full implementation of Nesbet’s proposed theory (Nesbet 1977). 
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Energy (eV i  

Figure 2. Percentage differences of cross sections from LFCC results for (a )  j ,  = O+ j = 2 
and ( b )  j , = l + j = 3 .  - , FONDA; ---, ANR; ----, EMA. As in figure 1 ,  thresholds for 
these excitations are shown as broken lines. 

above threshold differs from the LFCC result by 4.9%; the ANR and EMA cross sections 
at this energy are in error by 28% and 9% respectively). The percentage error introduced 
into u , ~ , ~  by the FONDA approximation drops to less than 1 YO by 0.1 eV; that introduced 
by the ANR remains greater than 1% until the energy is larger than 3.0 eV. 

More extensive comparisons, including differential cross sections, an examination 
of important K-matrix elements and results of other theories, will appear in a forthcom- 
ing report on the FONDA method. The most important next stage in the development 
of this theory is its implementation for vibrational excitation. For rotational excitation, 
several theories, such as the scaled ANR theory (Feldt and Morrison 1984) can produce 
sufficiently accurate cross sections. However, for vibrational excitation the situation 
is far more acute; the scaled A N R  method, for example, is not applicable to this 
scattering process. The extension of the FONDA method to vibrational excitation and 
its generalisation to allow an exact treatment of exchange are presently under way. 

I am grateful to Dr Neal F Lane for suggesting that I look again (and more closely) 
at Chase's original paper, to Drs Thomas L Gibson and Andrew N Feldt for ploughing 
through mountains of angular momentum algebra to check the FONDA derivations, 
and especially to Mr David Austin, who worked tirelessly with me for three summers 
on the derivation and implementation of the ideas in this letter. In this connection, I 
am indebted to Dr Kenneth Hoving, the Dean of the Graduate College at the University 
of Oklahoma, for supporting Mr Austin during his last summer in my group. This 
research was supported by NSF grant PHY-8505438. 
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