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Quantum reactive scattering in three dimensions: Using tangent-sphere
coordinates to smoothly transform from hyperspherical
to Jacobi regions
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Hyperspherical coordinates are well suited for treating rearrangement processes in the strong
interaction region, and several different hyperspherical coordinates have been used successfully for
quantum reactive scattering by various research groups. However, it is well known that
asymptotically the appropriate set of coordinates~for a three particle system! are the three sets of
Jacobi coordinates. In this paper we show how one can smoothly connect the hyperspherical
coordinates in the rearrangement region to Jacobi coordinates in the nonrearrangement region using
tangent-sphere coordinates. This procedure reduces the computational time required to solve the
quantum Schro¨dinger equation and eliminates the need for numerical projection. To illustrate this
method, we apply it to the F1H2
HF1F reaction, comparing reaction probabilities to those from
previous benchmark calculations based on a conventional formulation. ©2000 American Institute
of Physics.@S0021-9606~00!00622-X#
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I. INTRODUCTION

Rearrangement and exchange processes are importa
nuclear,1,2 atomic,3–5 and molecular scattering.6–9 Accurate
theoretical treatments of such processes are paramou
understanding many chemical, atomic, and nuclear phy
problems, including three-body recombination rates for c
trolling limitations in Bose–Einstein condensation,3,4,10

collision-induced dissociation and recombination for ac
rate treatment of chemical kinetics,11 and studying isotopic
anomalies of the upper atmosphere. They are also the ke
calculating cross sections for muon and positron scatterin12

and for e2e processes.13 Many numerical methods have bee
developed to study these processes. Prominent among
are techniques which use hyperspherical coordinates, the
vantages of which have been long recognized in m
contexts.7

In wave-function propagation methods for solving t
scattering equations for rearrangement collisions, signific
practical difficulties arise because different coordinate s
tems are appropriate to different regions of configurat
space. When reactants are well separated, the set of int
coordinates most suited to their behavior are those of
Jacobi system. But when these constituents are in close p
imity, hyperspherical coordinates are far better suited to
scribe their physics. The point at which the gap between
hyperspherical and Jacobi regions must be bridged is w
there appear such difficulties as nonphysical coupling
large hyperradii, the need to use different bases in differ
sectors of the domain of the hyperradius, the need to pro

a!Electronic mail: parker@mail.nhn.ou.edu
b!Electronic mail: morrison@mail.nhn.ou.edu
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gate through the same region twice, and loss of unitarity
theSmatrix. In this paper we describe how to use a third
of orthogonal coordinates—tangent sphere coordinates
bridge this gap via a propagation variable that continuou
and smoothly connects hyperspherical and Jacobi reg
and therefore completely eliminates the need for algebrai
numerical matching procedures of any kind. In addition
obviating numerical problems, use of tangent sphere coo
nates results in a savings of CPU time.

In Sec. II we outline the quantal scattering theory
hyperspherical and Jacobi coordinates. We also detail the
of tangent sphere coordinates to avoid the need to projec
scattering function in hyperspherical coordinates onto
counterpart in Jacobi coordinates. In Sec. III we describ
step-by-step implementation of this procedure. Then in S
IV we apply this method to the F1H2
HF1F reaction, as-
sessing its accuracy and value by comparing present re
to those from previous benchmark calculations based on c
ventional formulation. In Sec. V we conclude with a sum
mary of essential points.

II. THEORY

In wave-function propagation scattering methods
goal is to propagate a single-variable~radial! scattering func-
tion through configuration space into the asymptotic reg
where one can extract the scattering~S! matrix by matching
to known analytic boundary conditions. For rearrangem
collisions, such methods must overcome the problem that
grouping of particles in the exit channel may differ from th
in the entrance channel.7 If, for example, the collision of an
© 2000 American Institute of Physics



he
d

u

it

r
je
-
nd

th
ar

at

ys
o-
r

th

s

th

e

e-
tom
-

ar

ass
the
nal
t is
ion
-

two
the

at is

i co-

le

958 J. Chem. Phys., Vol. 113, No. 3, 15 July 2000 Parker et al.
atom A and a diatom BC leads to an atom and a diatom, t
three possible arrangements of the constituents A, B, an
are possible:

A1BC→A1BC, ~1a!

→B1AC, ~1b!

→C1AB. ~1c!

To denote a particular arrangement of particles, we shall
indicest for the atom of massmt andt11 andt12 for the
diatom of massmt111mt12 . Thus for the entrance and ex
channel arrangements in Eq.~1a!, t5A, t115B, and
t125C. Although we shall write in terms of atom-diatom
collisions, the formulation presented here applies equally
rearrangement collisions~1! in any three-particle system. Fo
example, in electron–hydrogen atom scattering, the pro
tile electron plays the role of the ‘‘atom’’ A, while the ‘‘dia
tom’’ is the target hydrogen atom consisting of proton B a
bound electron C.

A. Jacobi coordinates

The set of internal coordinates that best describe
asymptotic behavior of the atom and diatom for a given
rangementt are those of the Jacobi system JSt . For colinear
motion, these coordinates reduce to Cartesian coordin
We use mass-scaled Jacobi coordinates. LetXt denote a po-
sition vector from the origin of a space-fixed coordinate s
tem to particlet. After separation of the center-of-mass m
tion, the Jacobi coordinates for the relative motion a
defined as

Rt5Xt2
mt11Xt111mt12Xt12

mt111mt12
, ~2a!

r t5Xt122Xt11 . ~2b!

The vectorr t is the internuclear axis of the diatom, whileRt

is a vector from the center-of-mass of the diatom to
atomt.

The corresponding mass-scaled Jacobi coordinateSt

andst are scaled versions ofRt and r t , respectively,14–16

St5dtRt and st5
r t

dt
. ~3!

The dimensionless scaling factor is defined in terms of
three-body reduced mass,

m5S mAmBmC

M D 1/2

, ~4!

and the total mass of the systemM5mA1mB1mC, as

dt5Fmt

m S 12
mt

M D G1/2

. ~5!

These coordinates for one arrangementt are illustrated in
Fig. 1.

The scale factors in Eq.~3! change the lengths of th
position vectors but not their orientation. Thus the angleQt

between mass-scaled Jacobi vectorsSt andst is
n
C

se

to

c-

e
-

es.

-

e

e

e

Qt5cos21S St•st

Stst
D5cos21S Rt•r t

Rtr t
D . ~6!

Physically,St is the translational coordinate, which corr
sponds to the distance from the center-of-mass of the dia
to the atom, andst is the vibrational coordinate, which cor
responds to vibration~or dissociation! of the diatom. The
angleQt corresponds to the orientation of the internucle
axis of the diatom with respect to the translational vectorSt .

The three coordinates (St ,st ,Qt), which we shall call
the internal coordinates, uniquely specify the center-of-m
position of the three particles in the plane defined by
system. To orient this plane in space, three additio
angles—the three Euler angles—are required. Their effec
easily included in expansion bases using Wigner rotat
matrices~see Sec. II F!.17 Our emphasis will be on the inter
nal coordinates. For reactive collisions of the form~1!, there
are three sets of internal Jacobi coordinates.~The Faddeev
approach18,19 uses all three sets simultaneously.!

Mass-scaled Jacobi coordinates are convenient for
reasons. First, they yield an especially simple form for
kinetic energy operator, viz.15,7

T52
\2

2m
~¹St

2 1¹st

2 !. ~7a!

When written in terms of the rotational angular momentumj
of the diatom and the orbital angular momentumL of the
atom about the diatom, this expression assumes a form th
useful for conversion to other coordinate systems,

T52
\2

2m

1

Stst
S ]2

]St
2 1

]2

]st
2 1

1

St
2 Lt

21
1

st
j t
2DStst . ~7b!

Second, transformations between mass-scaled Jacob
ordinates for different arrangementst andt8 are effected by
simple kinematic rotations of the form7

S St8
st8

D5R~xt8,t!S St

st
D . ~8a!

HereR is a 636 matrix which depends on the skew ang
xt8,t between arrangementst andt8 as

FIG. 1. Mass-scaled Jacobi coordinates (St ,st ,Qt) for an atom–diatom
system.
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R~xt8,t!5S cos~xt8,t!I sin~xt8,t!I

2sin~xt8,t!I cos~xt8,t!I
D , ~8b!

where I is the 333 unit matrix. The skew angle betwee
adjacent arrangement channelst and t8 is the negative ob-
tuse angle defined by7

cosxt8,t52
m

dtdt8mt9
and sinxt8,t52

1

dt8dt
, ~8c!

wheremt9 is the mass of the atom in the arrangement ot
than the two arrangements that define the skew angle. T
for xAB , t5A, t85B, andt95C; this angle is shown in Fig
2. The skew angles obey the symmetry relationsxt,t50 and
xt,t852xt8,t . The sum of all three skew angles must equ
2p

(
t8

xt8,t522p and (
t8

xt,t8512p. ~9!

Note that t, t8, and t9 are cyclic permutations~A,B,C!,
~B,C,A!, and~C,B,A!.

B. Hyperspherical coordinates

Jacobi coordinates are not appropriate if the atom
diatom are in close proximity. In this region, the interactio
among the particles are strong and rearrangements
place. More suitable for this rearrangement region are hy
spherical coordinates. A variety of hyperspherical coor
nates are used in nuclear,1,2 atomic,3–5 and molecular
scattering,6–9 and one can easily transform from one hyp
spherical coordinate system to another using rotational fra
transformations, since all use the same hyperradius. Her
choose Delves hyperspherical coordinates,15 which are par-
ticularly convenient for describing motion in each arrang
ment channel. For colinear motion, the Delves hypersph
cal coordinates reduce to the usual plane polar coordina6

@In practice, we begin propagating the scattering function

FIG. 2. Hyperspherical coordinatesr and ut in two dimensions and the
skew anglexAB between thezt axes for arrangement channelst5A and
t5B. Also shown is the hypercircle of radiusr. The masses of the thre
constituent particles are taken to be equal, so all three skew angles are
to 2p/3.
r
us

l

d

ke
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e

we

-
i-
s.
n

Adiabatically-adjusting Principal-axis Hyperspherical~APH!
coordinates and transform to Delves coordinates at the o
boundary of the hyperspherical region.7#

For convenience, we choose thextzt plane and measure
the angleut from thezt axis, as illustrated in Fig. 2.~From
this point on, we assume that we have completed propa
tion in the three-dimensional hyperspherical region and
transformation from APH to Delves hyperspherical coor
nates.! This angle and the hyperradiusr are related to the JSt

coordinates by

St5r cosut and st5r sinut . ~10!

In three dimensions, the internal rotation angle in HSt coor-
dinates isQt ; this angle is common to the JSt and HSt

systems. Unlike the anglesut andQt , the hyperradiusr is
independent of the arrangementt, i.e.,

r5ASA
2 1sA

2 5ASB
21sB

25ASC
21sC

2. ~11!

In principle, the domain of these coordinates is

0<ut<
p

2
, 0<Qt<p, 0<r,`. ~12a!

In practice, however, the values ofr andut are limited in the
nonrearrangement regions, as

0<ut<ut
max, 0<Qt<p, 0<r<rmax<rasy,

~12b!

wherermax is large enough to enclose all rearrangement p
cesses, andrasy is the hyperradius at which one projects on
Jacobi channel bases. Later in this section, we show howrasy

can be reduced tormax by matching in tangent-sphere coo
dinates.~In the rearrangement region, 0<ut,ut

max to allow
for exchange of any two particles.! The valueut

max is the
angle at which the atom–diatom interaction potential b
comes repulsive; the hyperradiusrmax is the outer constant-r
contour of the HSt region, beyond which we switch to an
other coordinate system. In general,ut

max for two adjacent
arrangement channels, such ast5A and t85B in Fig. 2, is
related to the skew angle by

ut
max1ut8

max<xt8,t . ~13!

In practice, we desire near equality in this equation, so a
cent hyperspherical regions touch at the maximum excurs
of their respective polar angles.

The determination ofrmax requires consideration of th
point of contact between HSt and JSt regions. In Jacobi co-
ordinates surfaces of constant vibrational coordinatest are
half-cylinders of radiusst , as shown in Fig. 3. The maxi
mum radiusst

max is determined by the vibrational wave func
tion of the diatom in arrangementt: the domain 0<st

<st
max must encompass the range ofst where this function is

nonzero. These wave functions appear in the expansion b
for the system wave function, and it is important that the
be no overlap of basis functions for adjacent arrangeme
see Fig. 4. Since the maximum hyperradius for a given
rangement is tangent to the Jacobi cylinders, we must de
minermax for each arrangement so as to ensure that adja
cylinders do not overlap. So, although strictly speaking

ual
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hyperradii in Eq.~11! are independent of arrangement,
practice we obtain three different hyperradii,rAB

max, rBC
max, and

rAC
max. For example, for the adjacent regions shown~in the

plane! in Fig. 2 we have

FIG. 3. Jacobi coordinates (St ,st ,Qt) for the three arrangement channe
of an atom–diatom system with three equal masses. The translational p
gation variable isSt , the vibrational coordinate isst , and the angle be-
tweenSt andst is Qt . Surfaces of constantst are half-cylinders of radius
st , and surfaces of constantSt are half-planes normal to thezt axis.

FIG. 4. Hyperspherical coordinates (r,ut ,Qt) for the three arrangemen
channels of an atom–diatom system with three equal masses. The tra
tional propagation variable is the hyperradiusr. The Delves hyperangle is
ut , andQt is the angle between the Jacobi vectorsSt andst . The maxi-
mum values of the anglesut are limited so as to exclude the repulsiv
potential region, here illustrated for arrangement channelst5A and t5B.
rAB
max5

1

sinxAB
A~sA

max!212sA
maxsB

maxcosxAB1~sB
max!2. ~14a!

~Here and in other figures, the coordinate labelsxt , yt , and
zt do not refer to the positions of the particles. Rather, th
represent three orthogonal coordinates appropriate to the
rangementt and the region under discussion. Thus, in Jt

coordinateszt5St , xt5st , and yt5Qt .) To obtain a
single outer boundary for all three HSt regions, we choose

rmax[max~rAB
max,rBC

max,rAC
max!. ~14b!

This choice leads to the lower bound onr in Eqs.~12b!.
Equations for transforming between Jacobi and Del

hyperspherical coordinates are given in Table I. These
the familiar polar coordinate transformations, which can a
be expressed as a conformal map. Volume elements for t
systems, which are required for evaluation of matrix e
ments, appear in Table II.

Figure 4 shows the Delves HSt coordinates fort5A for
an atom–diatom system of three equal masses. Were w
include the full range of HSt coordinates, Eqs.~12a!, the
contours of constantr would be hemispheres of radiusr. But
in order to ensure zero overlap of vibrational wave functio
in adjacent regions, we chooseut

max5p/3. ~In HSt coordi-
nates, the vibrational distance isr sinut'rut for small polar
anglesut .) This choice excludes arrangements in which
three interparticle distances are large; here the poten
V(r,ut ,Qt) is repulsive and the wave function for the sy
tem can be assumed to be zero.

C. Solving the scattering equation in Jacobi and
hyperspherical coordinates

In scattering methods based on the close-coupling
proximation, the many-body Schro¨dinger equation for the

FIG. 5. A planar slice of the JSt and HSt systems for the three rearrange
ment channels of an atom–diatom system with three equal masses.
thick solid line indicates a possible trajectory for propagation of the scat
ing function into the asymptotic~Jacobi! region for channelt5B. The gap
between the hyperspherical and Jacobi regions arises because the hy
dius is tangent to the Jacobi contour of minimumSt at only one point.
Procedures for bridging this gap are discussed in the text.
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TABLE I. Relationships between JSt , HSt , and TSt coordinates. The top entry in each block is the propa
tion variable; the bottom entry is the ‘‘vibrational’’ coordinate.

Region Hyperspherical Tangent sphere Jacobi

Hyperspherical r5r r5Armax
2 1wt

2~11vtrmax!
2

11vt
2wt

2 r5ASt
21st

2

ut5ut ut5tan21F wt

vtwt
21rmax~11vt

2wt
2!G ut5tan21Sst

St
D

Tangent sphere vt5
r cosut2rmax

r21rmax
2 22r rmaxcosut

vt5vt vt5
St2rmax

st
21~St2rmax!

2

wt5
r21rmax

2 22r rmaxcosut

r sinut

wt5wt wt5
st

21~St2rmax!
2

st

Jacobi St5r cosut St5
vtwt

2

11vt
2wt

2 1rmax St5St

st5r sinut st5
wt

11vt
2wt

2 st5st
gl
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atom–diatom system is reduced to a set of coupled sin
variable differential equations by expanding the system w
function in an appropriate basis.20 The functions in this basis
are constructed from complete sets in the relevant coo
nates. In the JSt region, the basis for expansion of a wa
function in the body-fixed reference frame consists of pr
ucts of vibrational wave functionsfv j

(JS)(st) for the diatom in
arrangement t and associated Legendre polynomia
Pj

L(cosQt) for the rotational motion of the diatom.@For ex-
pansion in the space-fixed frame, the associated Lege
polynomials are replaced by coupled angular functio
Yj l

JM(Ŝt ,ŝt), whereJ andM are the quantum numbers for th
total angular momentumJ5j1L and its projection on the
space-fixedz axis, andj andl are quantum numbers forj and
L .20

The resulting single-particle scattering equation must
propagated from the origin into the asymptotic region wh
matching to asymptotic boundary conditions yields the sc
tering matrix. For rearrangement collisions, this propagat
encounters special problems owing to the use of differ
coordinate systems in different regions of configurat
space. These problems are evident in Fig. 5, which show
planar slice~colinear plane! through the JSt and HSt coor-
dinates for all three arrangements of an equal-mass sys
~The corresponding three-dimensional JSt and HSt contours
appear in Figs. 3 and 4.! At the juncture between the JSt and
HSt systems, the propagation variable changes fromr to St .
For each arrangementt, the hypersphere of radiusrmax is
tangent to the corresponding Jacobi contour of minimumSt

at only one value of the vibrational coordinate,ut5st50.
For any other angleut , there is a gap between the poi
(rmax,ut) and the start of the corresponding JSt region,
St

(min) . So if one knows the value of the scattering functi
on the surface of the hypersphere atrmax, one knows the
value at only a single point in the JSt region. Only at this
point, therefore, can one determine the scattering func
continuously from the HSt origin r50 to an asymptotic
value of the corresponding JSt translational coordinateSt .

To bridge the gap between the HSt and JSt regions, two
strategies have been proposed so far.7 ~We shall propose a
e-
e

i-

-

re
s

e
e
t-
n
t

a

m.

n

third in Sec. II D.! The most widely used approach is
match on the surface of the hypersphere of maxim
radius.7 A circle on this hypersphere is highlighted in Fig.
the actual matching surface is obtained by rotating this cu
around each of thezt axes. In practice, rather than transfor
the scattering function atrmax to JSt coordinates and propa
gating further, one simply propagates in HSt coordinates
from r50 to a hypersphere of radiusrasy in the asymptotic
region. There one projects the solution to JSt coordinates and
matches to asymptotic boundary conditions in these coo
nates~see Sec. II G!. Of course, the value ofrasy must ac-
commodate all anglesut ; i.e., this value must be in the
asymptotic region for all required values ofSt . This require-
ment results in a maximum hyperradius large enough that
just evaluate the JSt scattering function on the region of th
sphere where the HSt and JSt systems now overlap, the
cross-hatched region in Fig. 6.

Additional difficulties with this first procedure resu
from the dependence of the HSt vibrational basis functions

FIG. 6. One procedure for bridging the gap in Fig. 5. Solutions are matc
to asymptotic boundary conditions in the region where the Jacobi cylin
overlaps with this hypersphere~cross-hatched region!.
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on r, a consequence of the limited domain of the ‘‘vibr
tional’’ coordinateut in Eq. ~12b!. This dependence result
in a nonphysical channel coupling at large hyperradii t
requires the inclusion of basis functions for closed vib
tional channels. Worse, it requires subdivision of the dom
of the hyperradius into sectors, each of which has a differ
basis. One must therefore change bases at each sector b
ary, a requirement that demands considerable memory
significant CPU time. Strategies for accommodating this
mand are sector adiabatic bases,7 diabatic by sector bases,12

and smooth variable discretization.21

The second proposed way to bridge the gap between
HSt and JSt regions is to match scattering functions on J
cobi planes rather than on the hypersphere. This appro
illustrated in Fig. 7, entails propagating in HSt coordinates
out to the JSt plane that corresponds to the minimum val
of St . On this plane, the HSt scattering function is matche
to regular and irregular solutions that have been propag
inward from the asymptotic value ofSt . In addition to the
problems discussed in relation to matching on a hypersph
this alternative suffers from the fact that, as shown in Fig
the distance from the origin to the Jacobi matching pla
depends on the hypersphere angleut . This dependence re
quires one to propagate through the cross-hatched re
twice, outward in HSt coordinates where multiple hype

FIG. 7. An alternative to the scheme in Fig. 6 for bridging the gap in Fig
One propagates the scattering function in HSt coordinates out to the plana
surfaces of the Jacobi cylinders, shown by thick lines for all arrangem
channelst. One matches to solutions in Jacobi coordinates in the reg
where hypersphere overlaps these cylinders~cross-hatched region!.

TABLE II. Volume elements and are lengths along the propagation varia
q1 for the JSt(q15St), TSt(q15vt), and HSt(q15r) coordinate systems

Region Volume element
Propagated
arc length

Hyperspherical 1
4 r5 sin2~2ut!dr dut dŜt dŝt

rmax2rmin

Tangent sphere
wt

4~vtwt
21rmax1vt

2wt
2rmax!

2

~11vt
2wt

2!6 dwt dvt dŜt dŝt wt tan21S wt

2rmax
D

Jacobi St
2st

2dSt dst dŜt dŝt St
(max)2St

(min)
t
-
n
nt
nd-

nd
-

he
-
h,

ed

re,
,
e
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spherical sectors cross the boundary and inward in JSt coor-
dinates. Moreover, this technique does not guarantee un
ity of the resultingS matrix; in fact, the extent to which the
resultingSmatrix violates unitarity varies with the scatterin
energy. Finally, it is not clear how to adapt this strategy
formulations based on variational methods, such as the K
variational method.22 These difficulties have prompted ou
introduction of a third strategy based on tangent sphere
ordinates.

D. Tangent sphere coordinates

Tangent sphere coordinates appear in the compend
of coordinate systems by Moon and Spencer.23 ~We have
replaced their variableu by 1/wt andv by vt ; we have also
shifted their coordinatez by rmax.) For each arrangementt,
the TSt system is an orthogonal coordinate system wh
coordinates (vt ,wt ,Qt) are related to rectangular coord
nates by

~st!x5xt5
wt

vt
2wt

211
cosQt , ~15a!

~st!y5yt5
wt

vt
2wt

211
sinQt , ~15b!

St5zt5
vtwt

2

vt
2wt

211
1rmax. ~15c!

Note thatQt , the rotational angle of the diatom, is commo
to the TSt , JSt , and HSt systems.

The nature of these coordinates is most clear in
(xt ,zt) plane obtained from Eqs.~15! by settingQt50. In
Fig. 8, curves of constantvt are circles of radius21/2vt

centered atrmax11/2vt ; these circles are tangent to a lin
parallel to thezt axis atxt5rmax. The contourvt50 is the
xt axis. Similarly, curves of constantwt are circles that are
tangent to thezt axis atzt5rmax. In the limit wt→`, these
curves approach thezt axis.

.

nt
n

FIG. 8. Tangent sphere coordinates in two dimensions. For each coord
vt ~dashed curves! andwt ~solid curves! we show three constant-coordinat
contours: 1~thick curves!, 2, and 3~thin curves!.

le
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Constant-vt and constant-wt contours for three-
dimensional TSt coordinates can be obtained by twirling th
circles in Fig. 8 around thez axis. These coordinates ar
illustrated for an equal-mass sytem in Fig. 9. Strictly spe
ing the domains of the TSt coordinates are

0,wt,`, and 0,vt,`, and 0<Qt<2p. ~16!

These limits give for contours of constantvt spheres,

xt
21yt

21Fzt2S r1
1

2vt
D G2

5
1

4vt
2 , ~17a!

and for contours of constantw toroids about the origin~with
no center opening!,

xt
21yt

21~zt2r!25wtAxt
21yt

2 . ~17b!

But because only the domain@0,p# is physically mean-
ingful for the rotation angleQt , we restrict the maximum
value of this variable top. Hence the resulting surfaces a
not closed. Surfaces of constantvt are now hemispheres, an
surfaces of constantwt are half-toroids.~Additional restric-
tions must be imposed because of the proximity of the Tt

system to the JSt and HSt systems, as we shall discuss b
low.! The coordinate origin is regained by settingwt50 and
taking either limitvt→6`. The limit wt→` is thezt axis,
and vt50 corresponds to the half of thextyt plane for
which yt.0. To ensure that the tangent sphere region Tt

will not overlap the HSt and JSt regions, the following limits
should be used: 0,wt,st

max, 21/(2rmax),vt<0, and 0
<Qt

max,p.

E. Solving the scattering equation in tangent sphere
coordinates

The tremendous advantage of TSt coordinates for rear-
rangement collisions is that they allow us to introduce
single propagation variable that varies continuously a
smoothly from the origin ~in the HSt region! to the

FIG. 9. Tangent sphere coordinates for the three arrangement channels
atom–diatom system with three equal masses. The translational propag
variable isvt , the vibrational coordinate iswt , and the rotation angle abou
thezt axis isQt . Surfaces of constantvt are hemispheres, while surfaces
constantwt are half-toroids.
-

-

a
d

asymptotic (JSt) region. Figure 10 illustrates such a prop
gation in the (xt ,zt) plane, and Figs. 11 and 12 show th
three-dimensional, three-arrangement analog. Beginnin
the origin, the variabler varies fromr50 to r5rmax, where
it joins smoothly to the TSt variablevt at vt521/2rmax.
This variable increases through the TSt region until its
boundary atvt50, where it joins smoothly toSt at St

(min) .
From here we can easily propagate to the asymptotic va
of this variable.

Use of TSt coordinates as an intermediary between
HSt system, which is physically appropriate to the situati
in which the three particles are in close proximity a
strongly interacting, and the JSt region, which is appropriate
to the asymptotic limit, completely eliminates the need
algebraic or numerical matching procedures such as th
described in Sec. II C. Rather, by imposing continuity of t

f an
ion

FIG. 10. Hyperspherical (HSt), tangent-sphere (TSt), and Jacobi (JSt)
coordinates in thexz plane. The thick dashed curves delimit the TSt region.
The propagation variable in the HSt and JSt regions arer and St . In the
TSt region, the propagation variable isvt ~thick curve!.

FIG. 11. Bridging the gap between the HSt and JSt regions~see Fig. 5! with
tangent-sphere coordinates. The TSt region for t5B is delimited by thick
curves. After propagating the scattering function in HSt coordinates out to
rmax, one transforms this function algebraically to TSt coordinates and con-
tinues propagating with respect to the variablevt . At vt50, one performs
a second algebraic transformation to JSt coordinates and propagates into th
asymptotic region. Note that the arc atrmax in the HSt region is also the
contour of constantvt521/2rmax, and the line of constantSt in the JSt
system is also the contour of constantvt50 in tangent-sphere coordinate
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scattering function and its first derivative at these bounda
we can trivially determine theR matrix at the inner boundary
of the TSt region from theR matrix at the outer boundary o
the HSt region~see Sec. II G for details!. ~In our implemen-
tation, a frame transformation is performed at the ou
boundary of the HSt region to transform to the Delves hy
perspherical coordinates.! A similarly simple procedure con
nects theR matrices at the outer TSt boundary and the inne
JSt boundary. The propagated are lengths given in Tabl
can be used to ensure that the propagation steps are un
in each coordinate system.

As noted above, the domains in Eq.~16! are limited in
practice by the upper limitQt5p and by the proximity of
each TSt to its adjacent HSt and JSt regions. For example
the TSt translational coordinatevt is bounded as indicated i
Fig. 10,

2
1

2rmax
<vt<0. ~18!

The JSt vibrational coordinatest is bounded at the maxi
mum valuesmaxt by the properties of the vibrational wav
functions in the JSt basis, which requires that the coordina
wt of the TSt region be limited to the same physical rang
The vibrational coordinate ranges for the TSt and JSt sys-
tems must extend into the classically forbidden region
enough that the basis functions for arrangementt are essen-
tially zero.

FIG. 12. Jacobi, tangent-sphere, and hyperspherical regions for all arra
ment channels of an atom–diatom system with three equal masses.
curves highlight the boundaries between the HSt and TSt region and be-
tween the TSt and JSt regions, both for configurationt5A. Note that the
rotation angleQt , which is shown in Figs. 3 and 4, is common to all thr
coordinate systems. The domain of the vibrational coordinate, which is
thogonal to both the rotational and translational coordinate, extends into
classically forbidden~repulsive potential! regions far enough that the vibra
tional basis functions are essentially zero at the highlighted boundaries
s

r

II
rm

.

r

F. Hamiltonians and expansion bases

The kinetic energy operator in JSt coordinates is cus-
tomarily expressed using spherical coordinates (St ,Ŝt), and
(st ,ŝt), where Ŝt and ŝt denote the polar and azimutha
angles of their respective vectors. Writing the Laplacian o
erators¹St

2 and ¹st

2 in Eq. ~7a! in these coordinates an

introducing the orbital angular momentumL t of atom t
about the center-of-mass of the corresponding diatom,
rotational angular momentumj t of the diatom, and the tota
angular momentumJ5 j t1L t , the kinetic energy operato
becomes

T52
\2

2m

1

stSt
F ]2

]St
2 1

]2

]st
2 1

1

St
2 Lt

21
1

st
2 j t

2GstSt . ~19!

The system Hamiltonian in JSt coordinates is then

H5T1V~St ,st ,Qt!. ~20!

To transform the kinetic energy operator into HSt or TSt

coordinates, we simply apply the chain rule using the app
priate conformal transformation from Table I. Let us deno
by q1 the propagation variable in any of the three syste
and byq2 the vibrational coordinate~see Table III!. In terms
of these generalized coordinates, we can write a generic f
for this operator that pertains to any of the three systems23

T52
\2

2m

q1
kq2

h

S~q1 ,q2!s~q1 ,q2! F(i 51

2
1

Ag

]

]qi
S giiAg

]

]qi
D

1
L2

S2~q1 ,q2!
1

j 2

s2~q1 ,q2!G S~q1 ,q2!s~q1 ,q2!

q1
kq2

h ,

~21!

where the metric coefficientsgii andAg are given in Table
III. The exponents in the factorsq1

k and q2
h are chosen to

eliminate first derivative terms from the resulting kinetic e
ergy operator in each system; in JSt coordinates, for ex-
ample,k5h50, and the kinetic energy operator is~19!. The
inverses ofq1

kq2
h multiply the corresponding radial function

in Tables IV and V. The kinetic energy operators in the Ht

system that results from applying Eq.~21! is

ge-
ick

r-
he

TABLE III. Coordinates and metric coefficients for JSt , TSt , and HSt
coordinate systems. The volume elements for the full six-dimensional s
is st

2St
2Ag; see Table II.

HSt TSt JSt Generalized coordinate

Propagation variable r vt St q1

‘‘Vibrational’’ variable ut wt st q2

g11 1
wt

4

~11vt
2wt

2!2 1

g22 r2 1

~11vt
2wt

2!2 1

Ag r
wt

2

~11vt
2wt

2!2 1
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T52S \2

2m D 2

r5/2sin 2ut
F ]2

]r2 1
1

r2

]2

]ut
2 1

1

4r2

1
1

r2 cos2 ut
Lt

21
1

r2 sin2 ut
j t
2G r5/2sin 2ut

2
, ~22!

and that for the TSt system is

T52S \2

2m D 1

wt
2

~11vt
2wt

2!2

vtwt
21rmax~11vt

2wt
2!

3H ~11vt
2wt

2!2F 1

wt
4

]2

]vt
2 1

]2

]wt
2G

1
~11vt

2wt
2!2

@vtwt
21rmax~11vt

2wt
2!#2 Lt

21
~11vt

2wt
2!2

wt
2 j t

2J
3wt

2
vtwt

21rmax~11vt
2wt

2!

~11vt
2wt

2!2 . ~23!

The exponents in the scale factors for the HSt coordinates
arek51/2 andh50; those for the TSt coordinates arek50
andh51.

In each coordinate system, we solve the Schro¨dinger
equation for the scattering function by expanding the sys
wave function in a basis that is complete in the vibratio

TABLE IV. The Schrödinger equations used to define the vibrational fun
tions in the space-fixed and body-fixed bases. In the HSt system, different
vibrational bases are used in different sectors, as discussed in the tex
clarity, however, we suppress the sector index onr.

Region Vibrational Schro¨dinger equation

Hyperspherical H2 \2

2m

1

r2 F ]2

]ut
2 1

jt~ jt11!

sin2 ut
G1Vt~r sinut!2En,j

~HS!~r!J
3fv j

(HS)(ut)50

Tangent sphere
H2 \2

2m
~11vt

2wt
2!2F ]2

]wt
2 1

jt~ jt11!

wt
2 G

1VtS wt

11vt
2wt

2D2En,j
~TS!~vt!fv j

~TS!~wt!50

Jacobi H 2
\2

2m F ]2

]st
2 1

j t~ j t11!

st
2 G1Vt~st!2En, j

~JS!J fv j
~JS!~st!50

TABLE V. Space-fixed expansion of the system wave functionCg0
(q1 ,q2)

for HSt , TSt , and JSt coordinate systems. The channel indices for the
expansions areg5(t,n, j ,l ;JMp). The subscript 0 denotes the initial cha
nel.

Region Space-fixed expansion

Hyperspherical (
g8

2

r5/2 sin 2ug8
Gg8,g0

~HS!
~r!fv8 j 8

~HS!
~ug8!Yj 8 l 8

JM
~Ŝt8 ,ŝt8!

Tangent sphere (
g8

~11vg8
2 wg8

2
!2

wg8
2

~vg8wg8
2

1rmax1vg8
2 wg8

2 rmax!
Gt8,g0

~TS!
~vg8!

3fv8 j 8
~TS!

~wt8!Yj 8 l 8
JM

~Ŝt8 ,ŝt8!

Jacobi (
g8

1

St8st8
Gg8,g0

~JS!
~St8!fv8 j 8

~JS!
~st8!Yj 8 l 8

JM
~Ŝt8 ,ŝt8!
m
l

and angular coordinates of that system. For scattering f
an initial channelg05(t0 ,n0 , j 0 ,l 0 ;JMp), we denote the
wave function byCg0

(q1 ,q2), leaving implicit the constants
of the motionJ, M, and the parity

p5~21! j 1 l . ~24!

All channel indices containJ, M, p, and the arrangemen
channel indext. In addition, space-fixed channels are dist
guished by the quantum numbersv, j, and l, corresponding
to the vibrational Hamiltonian,j t , andL t , respectively. To
specify channels the body frame, we replacel by the L,
which corresponds to projection ofL t on the body-framezt

axis. Thus in the body frame, the initial channel isg0

5(t0 ,n0 , j 0 ,L0 ;JMp).20,7 The general form of the expan
sion, for any coordinate system in either body-fixed or spa
fixed reference frames, is

Cg0
~q1 ,q2!5(

g
Gg,g0

~q1!Fg~ q̂1 ,q2!, ~25!

where$Fg(q̂1 ,q2)% is the appropriate basis.
In each coordinate system, the functions in this basis

products of vibrational wave functions for the diatom a
angular functions for either the body- or space-fixed fram
In the body-fixed JSt system, for example, the basis consis
of products of functionsfv j

(JS)(st) and associated Legendr
polynomials Pj

L(cosQt), which represent rotational eigen
states of the diatom. The JSt vibrational Hamiltonian whose
eigenfunctions appear in this basis is given in Table
along with those for the HSt and TSt systems.

In the expansion ofCg0
(q1 ,q2) in this basis, the body-

fixed JSt radial functionGg,g0

(JS) (St) is multiplied by the scale

factor 1/stSt to cancel the factorq1q25stSt in the JSt ki-
netic energy operator~19!. Finally, the expansion is multi-
plied by the normalized Wigner rotation matrix17 to take ac-
count of the overall orientation of the system. There resu
the JSt expansion of the body-fixed wave function,

Cg0
~q1 ,q2!5(

g8
DL8,M

J
~at8 ,bt8 ,gt8!

1

St8st8

3Gg8,g0

~JS!
~St8!fv8 j 8

~JS!
~st8!Pj 8

L8~cosQt8!. ~26a!

The Wigner rotation matrix effects rotation into th
space fixed frame and so is not required for the correspo
ing space-fixed expansion. Rather, the rotational functi
Pj

L(cosQt) are replaced by coupled angular functions th
take into account rotations of the diatom and its orientat
in the space-fixed frame,

Yj l
JM~Ŝt ,ŝt!5 (

L8,m8
C~ j 8l 8J;L8m8M !Yj 8,L8~ ŝt!Yl 8,m8~Ŝt!,

~26b!

where we adopt the conventions of Rose for the Clebsc
Gordan coefficients.17 The expansion of the space-fixe
wave function in the JSt basis is

For

e
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Cg0
~q1 ,q2!5(

g8

1

St8st8
Gg8,g0

~JS!
~St8!

3fv8 j 8
~JS!

~st8!Yj 8 l 8
JM

~Ŝt8 ,ŝt8!. ~26c!

Corresponding expansions ofCg0
(q1 ,q2) in HSt and

TSt systems are given in Table V for the space-fixed fra
and Table VI for the body-fixed frame. In regard to the Tt

basis, note that the TSt vibrational Hamiltonian in Table IV
depends on the TSt translational coordinatevt in addition to
the vibrational coordinatewt . Hence the TSt vibrational
wave functions depend parametrically onvt . In practice,
this features causes no problems. The set$fv j

(TS)(wt)% is
complete for any vt in the physically relevant rang
21/2rmax<vt<0. For example, by choosingvt50 in this
Hamiltonian, we can make the vibrational Hamiltonians~and
wave functions! in the JSt and TSt systems identical.

G. Transforming the scattering function at boundaries
between coordinate systems

As discussed in Sec. II E, the use of tangent sphere
ordinates greatly facilitates propagation of the scatter
function from the origin to the asymptotic region because
replaces computationally intensive matching procedures~at
values of the propagation variable where a change of c
dinate system is made! by simple matrix transformations. A
either the HSt–TSt boundary or at the TSt–JSt boundary,
we merely impose continuity of the scattering functi
Cg0

(q1 ,q2) and its first derivative with respect to the prop
gation coordinateq1 . This chore is made easier by introdu
ing theR matrix, which is defined~in any coordinate system!
by the matrix product

R~q1!5G~q1!@G8~q1!#21. ~27!

Each boundary defines two regions: the one to its
and the one to its right. The continuity conditions conce
the propagation variable as it changes between these reg
We denote this variable in the left region byq1 and in the
right region byq̄1 . At the HSt–TSt boundary, for example
the maximum propagation coordinate for the left regio
q1

max, is rmax, while the minimum coordinate for the righ

TABLE VI. Body-fixed expansion of the system wave functionCg0
(q1 ,q2)

for HSt , TSt , and JSt coordinate systems. The channel indices for the
expansions areg5(t,n, j ,L;JMp). The subscript 0 denotes the initia
channel.

Region Body-fixed expansion

Hyperspherical (
g8

2

r5/2 sin 2ut8
Gg8,g0

~HS!
~r!fv8 j 8

~HS!
~ut8!

3Pj 8
L8(cosQt8)DL8,M

J (at8 ,bt8 ,gt8)
Tangent sphere

(
g8

~11nt8
2 wt8

2
!2

wt8
2

~vt8wt8
2

1rmax1vt8
2 wt8

2 rmax!
Gg8,g0

~TS!
~vt8!

3fv8 j 8
(TS)(wt8)Pj 8

L8(cosQt8)DL8,M
J (at8 ,bt8 ,gt8)

Jacobi
(
g8

1

St8st8
Gg8,g0

~JS!
~St8!fv8 j 8

~JS!
~st8!

3Pj 8
L8(cosQt8)DL8,M

J (at8 ,bt8 ,gt8)
e

o-
g
it

r-

ft
n
ns.

,

region, q̄1
max, is vt

(min) . Propagation and vibrational coord
nates at both boundaries appear in Table VII.

Imposing continuity of the scattering function at eith
boundary yields

Cg0
~q1 ,q2!uq15q

1
max5Cg0

~ q̄1 ,q̄2!u q̄15q̄
1
min. ~28a!

Inserting the generic expansion~25! and using orthogonality
of the basis functions appropriate to the left regio
Fg(q̂1 ,q2), yields

Gg,g0
~q1

max!5(
g8

Ḡg8,g0
~ q̄1

min!^FguF̄g8&q15q
1
max. ~28b!

We can write this result in matrix notation as

G~q1
max!5OḠ~ q̄1

min!, ~28c!

whereO is the matrix whose elements are overlap integr
between expansion bases for the adjacent regions.

Similarly, imposing continuity of the scattering functio
at a boundary yields

]

]q1
Cg0

~q1 ,q2!U
q15q

1
max

5
]

]q1
Cg0

~ q̄1 ,q̄2!U
q̄15q̄

1
min

, ~29a!

5
]q̄1

]q1

]

]q̄1
Cg0

~q1 ,q2!U
q15q̄

1
min

.

~29b!

Note that]q̄2 /]q1 is zero at any region boundary, because
a boundary unit vectors alongq̄1 and q1 are parallel. The
quantity ]q̄1 /]q1 in ~29b! is just the scale factor for the
transformation (q̄1 ,q̄2)→(q1 ,q2). Application of the ge-
neric expansion ofCg0

(q1 ,q2) and orthogonality of basis
functions for the left region yields a matrix equation for th
first derivatives that is analogous to Eq.~28c!,

G8~q1
max!5QḠ8~ q̄1

min!, ~30!

whereQ is the matrix of scale factors at the boundary.
Combining Eqs.~28c! and ~30!, we obtain the desired

transformation equation for theR matrix at a region bound-
ary,

R~q1
max!5OR̄~ q̄1

min!@Q#21. ~31!

e
TABLE VII. Values of the propagation and vibrational coordinates at t
boundaries between the HSt , TSt , and JSt regions. The third column gives
relationships between the vibrational coordinatesq2 in each region for val-
ues ofq1 given in the second column.

Coordinate system propagation coordinate (q1) vibrational coordinate (q2)

HSt–TSt boundary

HSt q̄1
max5rmax ut52 tan21S wt

2rmax
D

TSt q1
min5vt

~min!52
1

2rmax
wt52rmax tanSut

2 D
TSt–JSt boundary

TSt vt
(max)50 wt5st

JSt St
(min)5rmax st5wt
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To complete this description we need only determine
scale factors at each of the region boundaries. We can fa
tate implementation of Eq.~31! by judiciously exploiting the
aforementioned parametric dependence of the TSt vibra-
tional Hamiltonian onvt . If we choosevt521/2rmax in
this Hamiltonian, then the basis functions in the HSt and TSt

regions are identical. The overlap matrixO in ~31! then re-
duces to the identity matrix. Moreover, since at this bou
ary ]q̄1 /]q15wt

22, the elements of the matrixQ of scale
factors are simply

K FgU 1

wt
2UF̄g8L

q15q
1
max

5E fv j
~HS!~ut!

1

wt
2 fv8 j 8

~TS!
~wt8!dwt8 . ~32!

Note that for this choice ofvt , the vibrational coordinates
wt andut are related by

wt52rmaxtanS ut

2 D , ~33!

so we can evaluate the one-dimensional integral in~32! with
respect to eitherwt or ut .

At the TSt–JSt boundary, we choosevt50 in the TSt

vibrational Hamiltonian. This choice makes the TSt and JSt
vibrational basis functions identical, and again reduces
overlap matrixO in Eq. ~31! to the unit matrix. The scale
factor at this boundary is again equal towt

22, so the matrix
elements ofQ have the same form as those in Eq.~32!. Since
at vt50, the TSt and JSt vibrational coordinates are equa
wt5st , we can easily evaluate these matrix elements in
JSt system.

H. Calculating the differential cross section from the
R matrix

Once the propagation described in the previous sec
has reached the asymptotic region, a valueSt

(max) in the JSt
coordinate system, we extract theK matrix, with elements
Kg,g8, by matching the JSt scattering function to the usua
asymptotic boundary conditions,

Gg,g0

~JS! ~St!5a~St!2b~St!K . ~34!

For open channels, the elements ofa andb are proportional
to the Ricatti–Bessel and Neumann functions, respective24

ag,g0
5dg,g0

kg
1/2St ĵ l~kgSt!, ~35a!

bg,g0
5dg,g0

kg
1/2Stn̂l~kgSt!, ~35b!

where the channel wavenumberkg is defined by conserva
tion of the total system energyE in terms of the rovibrationa
energiesev, j of the diatom as

E5
\2

2m
k0

21ev0 , j 0
5

\2

2m
kg

21ev, j . ~36!

For asymptotically closed channels, the matching con
tions are

Gg,g0

~JS! ~St!5c~St!2d~St!K . ~37!
e
ili-

-

e

e

n

i-

Defining

kg5 ikg , ~38!

where kg5ukgu, we follow McLenithan and Secrest25 in
choosing

cg,g0
5dg,g0

kg
1/2St ĵ l~ ikgSt!, ~39a!

dg,g0
5dg,g0

kg
1/2Stĥl

~1!~ ikgSt!. ~39b!

The quantitiesag,g0
are real and closely related to the mod

fied spherical Bessel functionsI l g11/2, which are regular at
the origin. The quantitiesbg,g0

are also real. They are closel
related to the modified spherical Bessel functionsKl g11/2,
which decay to zero exponentially at large distances.24

With these conventions, we can determine theK matrix
from theR matrix ~27! at St as

K5~Rb82b!21~Ra82a!, ~40!

wherea8 andb8 are the first derivatives ofa andb evaluated
at St .

If the boundary conditions given above are applied b
fore the dying closed-channel coefficientsdg,g0

are negli-
gible, then the resultingK matrix will contain elements cor-
responding to both open and closed channels. The c
section, however, depends only on the scattering matrix
tween open channels. So only the open–open blockKoo of
the full K matrix contributes to theS matrix,25

S5~ I1 iKoo!~ I2 iKoo!
21. ~41!

From theS matrix, we calculate the transition matrix
with the conventionT5I2S, and thence the scattering am
plitude for a transition~in the space-fixed frame!,

g05~t0 ,n0 , j 0 ,l 0 ;JMp!→g5~t,n, j ,l ;JMp!. ~42!

In terms of elements ofT, this amplitude is

f ~kg ,g←k0 ,g0!5
2p

Akgk0
(
JM

(
l l 0

i l 02 l 11

3C~ j lJ ;m,M2m,M !Yl ,M2m0
* ~ k̂0!

3Yl ,M2m~ k̂g!Tg,g0

J , ~43!

wherek̂g5Ŝt denotes the scattering angle in the final sta
Finally, the differential cross section for this transition is

I g0→g~Ŝt!5
kg

k0
u f ~kg ,g←k0 ,g0!u2. ~44!

III. IMPLEMENTATION

To summarize the tangent sphere procedure and a
guide to future applications, here we outline the impleme
tation for reactive collisions of the type shown in Eq.~1a!.
Figure 12 combines all three regions and shows the dem
cation boundaries referred to in this description.

~1! Choose the range of total energiesE over which we re-
quire cross sections for comparison to experiment.
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~2! Estimate the number of required vibrational basis fu
tions and calculate vibrational wave functions for ea
arrangement channel in the asymptotic limit using a
lytic basis sets consisting of Sturmian functions for Co
lombic systems or simple harmonic oscillator eigenfun
tions for molecular systems. Integrals are evalua
using Gauss–Hermite quadrature designed to conform
the maximum value ofst as determined by the extent o
the vibrational basis functions.

~3! Calculate the maximum propagation radius in the Ht

region, rmax, from Eqs. ~14!. Using vibrational wave
functionsfv j

(HS)(ut) at rmax, we check convergence o
the vibrational eigenenergies with respect to the num
of basis functions, increasing the number of these fu
tions if necessary. These tests ensure that our bas
adequate in hyperspherical coordinates atrmax and in
Jacobi coordinates forrmax<St<`. Since this basis is
also adequate at the HSt–TSt and HSt–JSt boundaries,
it is comparably accurate over the entire TSt region,
21/2rmax<vt<0.

~4! Generate contour plots of the interaction potential in h
perspherical coordinates at several values of the hy
radius. From these we estimate the initial value ofr for
the propagation, making sure that all contours at t
value ofr are much higher than the maximum energy
which we will calculate cross sections. This check e
sures that for all energies propagation will begin in t
classically forbidden region.

~5! Calculate HSt surface functions and eigenenergies
several values ofr nearrmax, using the discrete variabl
representation, analytic basis set method, or finite
ment method. Using these we make the estimated s
ing value ofr precise via the WKB approximation. W
are quite conservative in our choice of this minimu
value ofr.

~6! Generate surface functions and coupled equations in
HSt region, storing on disk matrix elements and overla
to be used in the transformations from one sector to
other discussed in Sec. II C. This fairly extensive calc
lation requires numerous convergence checks and
stantial disk space. This step, however, is the last
before propagation.

~7! Propagate theR matrix in hyperspherical coordinate
from our initial value ofr to rmax, where we switch
from APH coordinates to Delves coordinates. We th
transform theR matrix function to TSt coordinates using
Eq. ~31! with the simplifications discussions in Sec. II G
This initializes the propagation with respect tovt

through the TSt region. At the outer boundary of thi
region, we again implement the equations of Sec. II G
transform theT matrix into the JSt region. Further
propagation with respect toSt yields the scattering func
tion at a value of this coordinate large enough that
matching equations of Sec. II H are applicable. T
yields theK matrix, from which we calculate the desire
cross sections.
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IV. APPLICATION TO F¿H2 SCATTERING

Since the F1H2
HF1F reaction continues to be th
focus of both theoretical and experimental activity w
choose this system to demonstrate the effectiveness of
tangent sphere method. In this section we compare res
calculated with the tangent sphere against those from pr
ous calculations in which we used a two-dimensional proj
tion of asymptotic Jacobi solutions onto a hypersphere
radius26–28 rasym59.5a0 . In both calculations we used th
potential energy surface of Brownet al. ~often referred to as
the T5a or Truhlar 5a potential!29 ~see Fig. 13!.

In this reaction two of the particles are identical, and w
identify arrangement channels as A5F and B5C5H. We
performed scattering calculations at 95 values of the to
energy in the range 1.65 eV<E<2.4 eV. Figure 14 shows
colinear contours for this system. The dashed contour co
sponds to the maximum collision energy, 2.4 eV. As th
diagram shows,rmax must be greater than'6.8a0 to allow
for tunneling in the interior hyperspherical region. We eva
ated the values ofsmax, the largest Gauss–Hermite quadr
ture point for each arrangement channel, using the same
brational basis and parameters as in our previ
calculations;26–28 these values are given in Table VIII. Th
skew angles and scale factors in this table were calcula
from the atomic masses. Using Eq.~14! we obtainedrmax

56.830 . So we could use surface functions from our pre
ous calculations26–28in propagation through the hypersphe
cal region, we choosermax56.975a0 , a value at which a
previously calculated surface function was available.26–28

Figure 15 shows hyperspherical~APH! contours for a con-
stant hyperradius of 6.875a0 . Figure 13 shows that for this
value ofrmax the barrier height for scattering from channel
to channels B or C is 3.9 eV with a width of 1.6a0 at the
maximum collision energy, and the barrier height from cha
nel B to C is 710 eV with a width of 5.4a0 at the maximum

FIG. 13. Colinear barrier heights for rearrangement processes illustrate
a two-dimensional ‘‘slice’’ through the T5a potential surfaceV(r
56.975,uAPH5p/2,xAPH) of Brown et al. in APH coordinates at a hyperra
dius of rmax56.975a0 .
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collision energy. These values ensure that tunneling in
tangent-sphere and Jacobi regions is negligible at all sca
ing energies of interest.

We propagated the coupled-channel equations fromr
52.2a0 to r5rmax in the hyperspherical region using AP
coordinates. We then applied the unitary transformation
transform theR matrix from APH to Devles coordinates
Using Eq.~31! to evaluate theR matrix in the tangent-spher
region, we then propagated through that region. Finally
again used Eq.~31! to evaluate theR matrix in the Jacobi
region, after which we propagated through that region fr
St5rmax to 20a0 , at which we applied asymptotic bounda
conditions.

Figure 16 shows reaction probabilityPn f←(n i , j i )
R (E) for

scattering from initial state (n i , j i)5(0,0) into a final vibra-
tional manifold n f ~summed over all final open rotationa
states! as a function of the total energyE(eV) for the F1H2

system with total angular momentumJ50. The curves cor-
respond to the present tangent sphere calculations and
dots to our previous results.26–28 Clearly, results from the

FIG. 14. Potential energy contour plot of the T5a potential energy surfac
Brown et al. in APH coordinates at a hyperradius ofrmax56.975a0 . The
white areas are classically forbidden regions where the potential ener
greater than the maximum collision energy of 2.4 eV~solid circle!.

TABLE VIII. Parameters used in the present tangent-sphere calculat
and in a benchmark calculations based on a two-dimensional projectio
asymptotic Jacobi solutions onto a hypersphere of radiusrasym59.5a0 .

Parameter Channel A Channel B or C

Atomic mass~amu! 18.9984032 1.00782503
dt 1.379 1.00
xt,t8 2.3309960 1.6211932
we (a.u.) 2.0053431022 1.88555731022

r e (a0) 1.40112 1.732517
nmax 1 1
j max 12 31
smax(a0) 2.770 3.352
rmax5Smin(a0) 6.975 6.975
Smax(a0) 20 20
e
r-

o

e

the

two calculations are identical to graphical accuracy. Sin
the size of the hyperspherical region in the present calc
tions is roughly half that in our previous study,26–28 the
present calculations require roughly a factor of 2 less co
putation time. More importantly, the current procedure co
pletely eliminates the matching procedure required in ot
methods.

V. CONCLUSIONS

The tangent-sphere method eliminates the need for c
plicated matching procedures such as those in hypersphe
methods for treating exchange or rearrangement proces
To accomplish this, we use tangent-sphere coordinate
smoothly propagate from hyperspherical coordinates to
cobi coordinates. The relationships between these coo
nates are shown in Figs. 11 and 12 and collected in Tab
For convenience we have gathered most of the key equat
required to implement this approach in tables: the scatte
equations in Table IV, expansion bases in Tables VI and
and boundary values of the propagation variable and vib
tional coordinate in Table VII. We hope that these tab
along with the step-by-step implementation scheme
Sec. III will facilitate other applications of tangent-sphe
coordinates.

In addition to eliminating the need for numerical matc
ing between the hyperspherical and Jacobi regions, the
proach described herein reduces the maximum distanc
which one must propagate in hyperspherical coordina
which is now limited to the range of hyperradii over whic
rearrangement and/or exchange processes occur. Outsid
rearrangement region we use simple Jacobi coordinate
propagate to a sufficiently large distance that all coupl
and phase contributions are negligible. In addition to incre

of

is

ns
of

FIG. 15. Potential energy contour plot of the T5a potential energy surfac
Brown et al.29 for the colinear configuration. The white areas are classica
forbidden regions where the potential energy is greater than the maxim
collision energy of 2.4 eV. The outer circle is the hyperradiusrasym of our
previous calculations.26–28 The inner circle is the hyperradiusrmax for cur-
rent implementation of the tangent-sphere technique.
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FIG. 16. A comparison of F1H2
HF1F transition
probabilities from our previous calculations26–28 ~solid
dots!, which uses the two dimension projection tec
nique, with results from the current tangent-sphere p
cedure~curves!.
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ing significantly the efficiency of hyperspherical method
computer programs required by the tangent sphere me
are simpler and easier to use.
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