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A classical ensemble model of three-body collisions in the point contact
approximation and application to alignment effects in near-resonant
energy transfer collisions of He atoms with Rydberg Ca atoms
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A classical ensemble model of three-body energy transfer in the point contact approximation is
presented. This model yields cross sections for transitions between initial and final states defined by
energy, magnitude of angular momentum, and projection of angular momentum along an axis of
spatial quantization corresponding to the quantum numbers of the initial and final stationary states,
n,I,mandn’,l’,m’. Using a cross section that is differential in the final-state quantum numbers, the
spatial constraints imposed by conservation of energy and angular momentum can be investigated
even for comparatively small quantum numbers. When applied to the @ptHe— Ca(18)

+ He energy transfer processes, the model sheds light on recently discovered alignment phenomena
in collisions of rare-gas atoms with initially aligned Rydberg atoms. Materials for the
implementation of this model are available from the authors via the InterneR0@ American
Institute of Physicg.S0021-960600)03032-4

I. INTRODUCTION sured inelastic cross sections for effects such as a depen-
dence on the angle between the polarization of the exciting

In this paper we present a classical transport model ofyqar and the relative velocity of the rare-gas projeétilef

energy transfer in heavy-particle collisions within the Ferm'present, such effects signal that the excited electron

point contact approximatioh Although fully classical, this o heren its initial alignment through the collisigA.Until

model incorporates quantization of energy and angular mor’ecently, all investigations of alignment in near-resonant en-

menta in both the initial and final states. As a first application rgy transfer collisions have considered targetoip-lying

of this model, we consider near-resonant energy transfer COExcited states, not Rydberg stafeSor such targets, the

Llslg?ga?\éc:;{[?r%é?}tggcﬁ‘lilcl:%rrlf/d tﬁgitc):;?er%z z?)t%rgessc’;\nd aqualitative explanatiqn of ali.gnment effe-c-ts has been predi—
' ' cated on the formation during the collision of a transient
Ca(4s17d 'D,) + He—Ca(4s18p 'P;) + He. (1)  quasimolecular electronic state. According to these “orbital
following” and “locking” models,>%° the orbital of the
Recent experimental and theoretical studies of suclexcited electron temporarily couples to the internuclear axis
collision$® have raised provocative qualitative questionsof the quasimolecule. Consequently, depending on the dis-
which the present classical model can address. No classicgince at which the orbital locks and on the symmetry of the
model can, of course, produce quantitatively accurate crosgsulting electronic state, cross sections may exhibit align-
sections for such a system. Our classical cross sections afgent effects of varying degree. Such models, however, are
however, in sufficient qualitative agreement with quantum-not germane to collisions witiRydbergatoms, where the
mechanical results that we consider their implications rel'e|ectr0n’s Comparative|y IOW Speed and extreme|y diffuse
evant for the actual scattering process. Moreover, this modJrobability density invalidate a molecular(Born—
can y|e|d insights that Would be d|ff|Cu|t to glean from fu” Oppenheimerdescription of the dynamiéé—_vlz Hence, Cross

quantum-mechanical investigations. For example, for th&ections for rare-gas collisions wiktydbergatoms were not
Ca—He collision(1), we have determined the transition prob- expected to manifest alignment effects.

ability as a correlated function of the relative velocity of the  Nevertheless, measurements by Spial 1314 revealed
rare-gas projectile and the distance of the Rydberg E|eCWOUnambiguous alignment effects in cross sections for the
from the Cd core at the time of the collision. This probabil- 17d—18p transition in Ca resulting from collisions with
ity clarifies whether the interaction occurs far from the COreground-state Xe atoms at a single mean relative velocity.
where the Coulomb wave function describes the electron, ofyantum calculations by Isaacs and Morri€dnconfirmed
near the core, where the core can significantly influence thgese results and, by exploring a wide range of relative ve-

re-

electron. . locities, uncovered heretofore unknown oscillatory structures
~In the laboratory, processes such(as are studied by i, the cross sections for this transition. These authors also
first aligning the initial state of the Rydberg electr@®g.,  jnyestigated analogous scattering processes for Ca—He colli-

via multiple pulsed-laser excitationthen analyzing mea- gjons finding qualitatively identical phenomena in state-to-
state cross sections. These findings raised questions concern-
dElectronic mail: morrison@mail.nhn.ou.edu ing the origin of the alignment effects, the physical
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mechanism responsible for the oscillations, and reason fol )
their striking dependence on the initial and final magnetic 120"\ . Ca-He 17d->18p
guantum numbers of the Rydberg electron.

A coterminious semiclassical time-dependent analysis of
the Ca—He system by Morriscet al2 revealed the physical
mechanism behind the oscillations in the state-to-state en
ergy transfer cross sectiohbut left unexplained the align-
ment effects themselves. Alignment effects most clearly
manifest in partial magnetic sublevel cross sectiaH'é(v).

To construct these, one first calculates state-to-state cros

cross section (au)
8
T

60 -

sections as a function of the relative Ca—He velocityfor S

the transitionsa=(n,I,m)—a’=(n’,1’,m’) for all mag- ik et
netic quantum numbersr and m’ allowed by the orbital , ‘ ‘

angular momentum quantum numbeémsndl’ of the excita- 500 900 1300 1700

tion (n,I)—(n’,I"). One then sums the resulting cross sec- relative velocity (m/s)

tions over final staten’ for each initialm. The extent to _ _ , L

. . . . g‘ﬂ\ FIG. 1. Partial magnetic cross sections fod1718p transitions in Ca—He
which each of the resu_ltlng partu_al Cross _SeCt_'on (v) collisions. Semiclassical resulfgoints of Morrisonet al. (Ref. 3 are com-
depends onm| at a particular relative velocity is a mea-  pared to the quantum impulse cross sections of Isaacs and MofRer?)
sure of the strength of the alignment effect: if these quantitiegines) for [me[ =0 (solid line and closed circlgs|mo|=1 (long-dashed line
are independent dfnl’ then no such effects are present and and open trianglésand|mg| =2 (short-dashed line and open squares
the collision has obliterated all information concerning the
initial alignment of the Rydberg electrdnFigure 1 shows
pronounced oscillatory alignment effects in partial magnetic
cross sections for the #7-18p transition in Ca—He colli- these energy transfer processes are beyond what the uncer-
sions. This figure also illustrates the striking concurrence ofainty principle allows.
cross sections from the aforementioned quantum-mechanical The broad theoretical context of the present research, as
and semiclassical studies. The present classical model corff! the quantal calculations of Isaacs and MorriSdrand
pletes our theoretical triumvirate of studies of this problemthe semiclassical study of Morrisat al,” is the binary en-
and provides insight into the underlying physics behind thefounter approximatiof, in which three-body interactions

alignment effects in scattering process such as the one € neglected and the interaction potential for the system—
Fig. 1. consisting of a Rydberg electron, the core, and a

More generally, our model provides an efficient methodP€rturber—is approximated by a sum of two-body interac-
for calculating energy transfer cross sections of sufficienf!ons' We further neglect the explicit core—perturber interac-

accuracy to provide estimates of quantities needed for eﬁjon,t.rele.ge;tlng the (t:ot;]e to th.? roI.e.?f Ia (sjpf(_act?tor: thl)se
prmertalcesign.Inaddon,itafers  ossle avenue o LT 10 ST e ee e e e
investigating the appearance in semiclassical or approximatse ydberg i ST .
. . invoke the Fermi point contact approximatibim which the
guantal calculations of false resonances—spurious peaks In . . -
. interaction that governs the binary collision between the
the energy dependence of the cross section for energy trans; . :
. . electron and the perturber is modeled by a pseudopotential
fer processes that do not appear in nature or in full three;

: : . . that is proportional ta5(r —R), wherer is the position co-
dimensional scattering calculations. A famous example of Qdinate of the Rydberg electron amlis that of the per-
“false resonance” is the early predictith'® of resonant

. . . turber. This approximation is valid provided the correspond-
features in state-to-state integral cross sections for the

'i_h cross section depends weakly on the kinetic energy of the
+H, reaction. Subsequent, more accurate calculatfoffs g P Y oy

, _Rydberg electron and that the atomic polarizability of the
revealed that these structures were spurious. A second ;E

) ) k ! ' erturber is small—conditions that are well satisfied by the
stance is a feature in reduced-dimensionality quantum scakystem at hand. The classical equivalent of the Fermi model

tering calculations for the @D)+H,—~OH+Hreactionata g the approximation that the electron—perturber encounter
collision energy of 0.22 eV This structure does not appear occurs only at a single point in space.
in the results of the full three-dimensional study of Peng |nterest in classical treatments of Rydberg states has in-
et al?® creased since it became feasible to create in the laboratory
For the Ca—He collisiort1), we find that the classical mesoscopic atomic states whose evolution can be described
transition probability varies greatly with the relative velocity classically?’~3° Although the states of interest in the present
of the perturbewy and the distance between the Rydberg application are not this highly excited, recent theoretical
electron and the core. This strong variation leads to spuriougork on classical statistical distributions that correspond to
peaks in state-to-state cross sections. These peaks cannot géantum-mechanical stationary stadteis highly relevant to
flect true resonances, because they are due to featurestie model we describe. In the context of collisions of
classical probability that are much narrower than the de Broground-state atoms with Rydberg atoms, classical models of
glie wavelength of an electron moving with a velocity . angular-momentum mixintf, of energy transfer between
That is, structures in the classical phase space leading ®Rydberg state®® and of the inelastic atomic form factSr
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have illustrated the ability of classical physics, judiciouslymum of 32 such trajectories exists, corresponding to

applied, to explain phenomena not only for quantum num+the roots of an eighth-degree polynomial and the four

bers large enough to enter the macroscopic realm of the cocombinations of signs that specify whether the satellite is

respondence principte but also for lower-lying Rydberg moving toward or away from the core before and after the

states, which heretofore had been considered the province obllision.)

quantal or semi-classical descriptions. It is in the spirit of ~ While one must turn to quantum-mechanical calculations

such recent developments that we offer the present classicldr quantitative predictions of near-resonance energy trans-

analysis of alignment effects in rare-gas collisions with ini-fer, the classical model described in Sec. Il offers a qualita-

tially aligned Rydberg targets. tive picture that allows one to address such issues as where
In the purely classical theory detailed in Sec. Il, we in-energy transfer occurs and at what electron speed the colli-

vestigate the effect of constraints on the orbital energyion takes place. Section Ill presents the technical details

E(n,l), the orbital angular momentuin, and the projection needed to implement this model via an expression for the

of L on an axis coincident with the initial relative velocity. transfer functionr, ,+(v,,r), from which one can calculate

Specifically,we constrain these observables to be consistentross sections that are differential in the final-state quantum

with their values as calculated from the correspondingnumbers

guantum-mechanical eigenvalues for initial- and final-state

quantum numberg=(n,I,m) anda’=(n’,I",m’"). In gen- do,

eral, the issue is how such constraints influence the dynamics ~———— = J Taar(Vp,M)PA(r)PL(r)dr, 3

of transfer from the internal energy of a bound two-body dn’ dl” dm

core—satellite(CS system to the translational energy of a

perturberX in the scattering process wherev,= (M +Mg)ux /m;, with m, andm the masses of

the core C and satellite S and, the relative speed of per-
turberX and the target. The functioris,(r) andP,(r) give
CYa)+X—CSa')+X. (2)  the electron probability distribution as a function of the C-S
distance. As we shall illustrate in Sec. V, graphs of the trans-
fer function T, .+ reveal rich structure due to the spatial
constraints imposed by conservation of energy and angular
Jnomentum. Section IV presents a systematic procedure for
evaluation of the transfer function. Section V presents results
or the Ca—He procedd) and compares them to those from
prior quantal and semiclassical calculation. Our conclusions
yfollow in Sec. VI.

[For the process Eql), the core is the Caion, the satellite
is the Rydberg electron, and the perturber is the He dtbm.

much greater than the region in which the perturkenter-
acts with the satellite. Under these conditions we may invok
the point contact approximatidnaccording to which energy
transfer occurs only when the satellite collides elasticall
with the perturber at a single point in space.

A simple counting argument illustrates the severity
of such constraints. A collision between a satellite S and!- AN ENSEMBLE MODEL OF THREE-BODY
a perturberX is completely described by the locationof COLLISIONS
the point interaction, the velocitys of the satellite, the Our classical picture of near-resonant energy transfer
initial velocity vy of the perturber, and the scattering begins in a universe of satellites S orbiting cores C to
anglesQ;=(6;,¢;). Thus, in addition tory=vyz, one must which they are bound by a central potentis(r). If
specify eight parameters to describe a scattering eventhe potential depends on as 1f, as in the Rydberg-
Because in the experimental situations of interest the C&tom rare-gas collision(1), then this is a universe of
system is oriented symmetrically with respect to the relativeKepler orbits. In anticipation of our eventual comparison
velocity of the CSX collision,” one of these parameters is to quantum mechanics, we imagine that each orbit has
the angle of an arbitrary rotation of the system about thdotal energyE,=E(n,l), magnitude of angular momentum
relative velocity. This symmetry consideration leaves onlyL=I(I+1)%, and projection of angular momentum
seven dynamically significant parameters. Specification o&long thez axis L,=m#. In this paper we apply our model
the initial- and final-state quantum numbers for a transitiorto an electrostatically bound Rydberg atom and, in a
(n,I,m)—(n’,I",m’) provides six constraints, leaving only future publication, will do so for a harmonically bound
one degree of freedom. Thus, for a given electron—core sepaiolecule in the rigid-rotor approximation; in this section we
rationr, only a discrete set of trajectories is allowed for ashall present results for both systems. Their bound-state
particular state-changing collisiofAs we shall see, a maxi- energies are

_Mse4 .
———=— Keplerorbit
£ | 28%(n-5)7 P (4

hwo(n+3)+Bl(1+1) harmonically bound rigid rotor.
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Here, us is the reduced mass of the electron—core system
and &, is the quantum defect. For the harmonically bound
molecule,wq is the natural angular frequency apdis the
rotational constant.

To determine the velocity of a satellite and its position
with respect to the core, one must specify three degrees of
freedom in addition to the aforementioned quantum num-
bers. For these degrees of freedom we choose the angles
shown in Fig. 2. This figure shows an orbit with angular
momentumL, Runge—Lentz vectoA, and phasep, in a
coordinate system whoseaxis is parallel to the perturber
velocity. Here,¢; is the angle from the Runge—Lentz vector
to the position of the satellite relative to the core at titne
with ¢,=0 att=0. Becaus@\ is in the plane of the orbit, its
direction can be uniquely specified by a single angjlecon-
structed as follows. First, define a vectoralong the inter-
section of the plane containing and thez axis with the
plane of the orbit; the origin o€ is at the center of mass.
Then, ¢ is the angle of the right-handed rotation abaut
that carriesC to the position vector of the electron. The
direction ¢, of Runge—Lentz vector can then be found by
rotating C aboutL through an angleby= ¢.— ¢;. For the  FIG. 2. Parametrization of the velocity, and positionr,, in terms of &
three degrees of freedom we choose: the azimuthal directioa(n’,1’,m’), ¢, r, and angular momentui.
¢, of the angular momentum vector, the directigp of the
Runge—Lentz vector, and the phase of the orbit, as deter-
mined by the timet it takes the satellite to travel from the
aphelion of its orbit. AlthouglE, L, andL, are fixed,_and oot f f f (d_‘f) 0 P(verodvedr.dQ . (6)
¢ are distributed randomly between 0 andr,2andt is Ux dQ);
distributed randomly between 0 and the classical pefiod
the orbit. Within the constraints described above, specification of

BecauseE andL are conserved, our classical universe, if the initial velocitiesvs andvy and of the scattering angle;
undisturbed, would remain stable forever. However, our unicompletely determines the final velocitie§ andvy . In the
verse also contains randomly distributed perturbing particle®0int contact approximation, the final displacement is equal

X, all of which have velocityy=v2. Occasionally one of 0 the initial displacement, that is; =r. Thus, fromvs, rs,

H ! !’
these perturbers strikes a satellite, chanding, andL, of ~ and (i, we can determing; andrg and hence the energy
its orbit. We wish to know the distribution in energy and and angular momentum of the final state. Moreover, one can

. . , , :
angular momentum of the orbits that have suffered a colli¥Vrité the final quantum numbere, 1", andm’ as functions

sion. To find this distribution, we may proceed rigorously ©f Vs: I's, and€;, although the functional forms are by no
from the Boltzmann equation of transport. Because the form&1€ans simple. In anticipation of our eventual comparison to
of the resulting cross sections are intuitive, we relegate thigu@ntum mechanics, we modif§) to define a cross section
detailed analysis to the Appendix and simply state the resulf§1at is differential in the final quantum numbers
here.

If insufficient time has passed to significantly alter the

initial distribution of orbits, then the rate of collisions that L: iJ’ f J s(n" —n'[vs,rs,Qs))
create new orbits is dn’dl’dm' Ux
X 61" =1"[vg,rs,Qs])
do

ka:f f f d_(ll UrPa(Vs,rs)dVSdrSin. (5) Xﬁ(m'—m’[vs,rs,ﬂs])
Here, do/dQ; is the differential cross section for the d")

’ X P - Q;. 7
electron—perturber collisiony,=|vs—vy| is the relative “(VS’rS)ur(in dvs drs ded, 0

speed of the satellite S and perturberandrg andvg are the _ _ _ _ _
displacement and velocity, respectively, of the satellite withWe call this quantity aumber differential cross sectiand
respect to the core. The functid,(vs,r) is the probability  justify its form rigorously in the Appendix.

that an electron with initial quantum numbetis=(n,|,m) The number differential cross section is distinct from the
will have positionrg and velocityvs. Finally, Q; is the  conventional classical cross secti@ﬁfl')man,l,m, for produc-
center-of-mass scattering angle of the satellite—perturber coing a final state with values of’, |’, andm’ within one unit

lision. By dividing this rate by the speed, of the perturber, of the true final-state quantum numbétg.he two cross sec-
one obtains the cross section tions are related by
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(ch 1 Jmm(m +ARARNIT (1 + ))jl +AJ doa —dn"dl”"dn’ ®)
g MmN ,
nim=n'm" V) axm’ —az— 1717+ 1)) dn"dl”dm’

where V~1/A% is the volume of integration and is the  postcollision velocitiesv, and v, correspond to the initial
binning parameter for Monte Carlo evaluation of the integral.conditions of a different orbit, with altered relative energy,
Although details of how bins for the final-state quantum angular momentumand center-of-mass velocity.
numbers are defined differ depending on the implementation,  Using the equality(9) and conservation of total linear
A is normally set equal to 1In Sec. V we discuss a numeri- momentum, we can recast the general problem of three arbi-
cal comparison of the two definitions which illuminates thEirtrary massesis, m., andm, that collide with relative speed
relationship) For quantum numbers much larger than 1, they into the simpler problem of the collision of a perturber of
number differential cross section is likely to vary slowly with massm, and speed, with a satellite of masg. that orbits

, I", andm’. In this limit, the two cross sections are ap- a stationary core of infinite mass. This derivation exploits the
proxmately equal, because the volume of integration is exfact that the motion of the core is unaffected by the collision.
actly 1. In this paper, however, we are interested in transiywe emphasize that no additional approximations are made
tions to small values oft’, I, andm’ for which the cross by recasting the problem in this way.
section varies strongly with these quantum numbers. In this |n a reference frame in which the center of mass of the
case, the two approaches lead to very different results. Wes system is stationary before the collision, the velocities
consider the number differential cross section more appropriand v, are related to their relative velocity
ate to our concerns because it conserves energy, total angular
momentum, and angular momentum projection along the Vv=vgi—V,, (103
guantization axis. We can therefore use the number differen-
tial cross section to explore the effect of constraining thes®Y
observables on a scattering process.

In the next section we reduce the eight-dimensional in- Vo= Me v, (10b)
tegral of Eq.(7) to a one-dimensional integral by introducing M+ Mg
the transfer functiol,, ,/(v,,r) of Eq.(3). The complexity
of the derivation is not reduced significantly by presupposing Vo= — ms (100

a specific mass combination, so no such approximations are  © mc+ Mg
made. We encourage readers who are not keen on the details

to skip to the step-by-step implementation algorithm inClearly, Egs.(108—(10c) are consistent with the use of a
Sec. V. reference frame in which the initial center-of-mass velocity

of the core—satellite system is zero
11l. DETERMINATION OF THE TRANSFER FUNCTION

AND NUMBER DIFFERENTIAL CROSS SECTION Pe Ps=MgVs+McVe (113
A. Reduction of the general three-body point m,Mg— M.Mg
interaction problem to the special case of a core of :WV (11b)
infinite mass ¢ s

The algebra required to determine the transfer function =0. (110

Ty o (vp,r) so that the multidimensional integral in EQ) o _ _

for the number differential cross section can be reduced to A collision with the perturber rotates the relative veloc-
the one-dimensional integr&B) and evaluated is quite in- ity Ur=Vs—Vy of the perturber and satellite so that the final
volved. To render it more tractable, we first invoke the pointsatellite velocity is

contact approximatiohln this model the core C acts only as

a spectator, so its velocity does not change during the = vyt Ms U, + My R U, (129
perturber—satellite collision s Mg+ My my+ Mg
VL=V, C) me [ myv+myy, my
. . . - = Ri(v—v,) |, (12b
Regarding this equality, note that although the collision ac- Me+mg| mg+my my+mg P

tually does change the core velocity, it does so on a time
scale comparable to the period of the core—satellite rotatiovhereR; is a rotation matrix, unconstrained by conservation
In the point contact approximation, this time scale is muchof energy or angular momentum, that is determined by the
longer than that of the perturber—satellite collision. There-dynamics of a single collision. In this equation we have also
fore, the same model within which the interaction occurs aintroduced the effective perturber velocity

only one point in space allows us to assume that the energy
transfer process takes place without changing the core veloc-
ity. After the collision, the satellite’s new velocity ig . The P M

m.+m
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To evaluate the energy and angular momentum of th@his step completes the simplification resulting from the
final state, it is more useful to know the relative velocity thanpoint contact approximation and conservation of linear mo-

the velocity of the satellite alone. Fortunately, because of thenentum. From this point on, we assume a satellite of mass

spectator assumption @), the relative velocity is easily
obtained as

V' =vi—Vv, (149
m
=v,+ Bs g+ —" Ry, (14b)
Mp+ s Mp+ s
where we have made the substitutions
me+ Mg
Vi=V—=Vp= (Vs—Vx), (149
S
m,= ey (140
P (me+mg)(me+mg+m,)’
and
mSmC
Ms= Mo+ M. . (14e

Care must be exercised in using Efda. This equation

M Orbiting a core of infinite mass with velocity which is
struck by a perturber of mass, moving with a speed, .

To apply the results of this simplified situation to the general
case(without approximatiojy we merely make the substitu-
tions of Eqs.(10), (13), (140, (14d), and(14e.

B. Distribution of the initial velocity and displacement
vectors

To derive an expression for the initial electron probabil-
ity P,(v,r), we first determine r(E,L,L,;® ,da,t)
:ra(¢L 1¢A!t) and V(E1L7Lz;¢L 1¢A!t)zva(¢L 1¢’Avt)'

The semicolons in the arguments of these quantities signify
that while the values O, L, andL, are the same for every
orbit in our ensembleg, , ¢5, andt are distributed ran-
domly.

Letting 6, and ¢, be the spherical polar coordinates of
L, with

gives correctly the relative velocity of the satellite and the cosa,_=2= m (18)
core, but the relationship between the relative and satellite— L 1/|(| +1) ’
core velocitiesafter the collisionis not trivial. In particular, i
becaus®,+ p.+ 0, we cannot use relationships analogous o€ find
Egs.(10b); i.e., ro( b, da,t)=r, (DL, de— P ,1) (199
m _
V;?é +C V,, (15& 00L C¢L C¢C S¢L S¢C
M¢+ Mg =r(t)| cOLspLChdc+Ch S |, (19b)
m —sf, ¢
Vi — ———V'. (15b) LG _
Mg+ ms where we have used the shorthand notatiofiscosé and

Fortunately, the energy and angular momentum of the fina$f=sin6 and wherer (t) is the distance of the satellite S

state depend on the relative velocity, not\gnor v, .
Because Eq(149 is structurally identical to Eq(123),

from the core C at timéas determined from Newton’s laws.
It is significant that the only functional dependence of

we can easily transform from the general case of three arbf-a(®L,¢c,T) ON ¢4 is through the variableé. . Becausapa
trary masses to a core of infinite mass. The transformation i§ assumed to be uniformly distributed from 0 ter2the
made complete by recognizing that neither the relative endistribution of values of¢. is also uniform.(This is true

ergy of the collision nor the structure 6f) is changed by the
substitution of hypothetical massgpg andm;, and velocities
vV, Vp,, andy, for the physical masses., mg, andm,, and

the physical velocities., vg, vk, andu,. The relative ki-

netic energy becomes

1 mm, , 1 mgm, 5
rel_z Mg+ mxur _E me+ mx(vs_VX) (16@

1 psmy 5 1 pgmp 2
_EMS+mpvr—§#s+mp(v—vp) , (16b

and the number differential cross sectigh becomes

47, 1”]5(' Tvr,Q))
_—=— n'—n'[v,r,
dn’dl’dm’ Up

XS(I"=1"[v,r, Q) é(m" —m'[v,r,Q])

do

gay) Avdrdo;.

17

XPa(V,r)vr(

even though the distribution ap, favors angles close to 0
and.) Itis therefore advantageous to define the direction of
the Runge—Lentz vector in terms ¢f. rather thang, .

To determine the electron velocity, (¢, ,¢.,r), we
first express this quantity in terms of its components parallel
and perpendicular to, (¢, ,d¢,r), as

Vol L e 1) =0T+ 00T, (203
where
COLCh  Ch.—Sd| S,
F||=M= CO.SPLCohc+ChLShe |, (20D
—S6O  Coh.

and
—CO_ChLSh.—Sd Co

—CO_.Sh Spct+Ch Coh
S0L S¢c

T
ra( ¢L1¢C+§rr>
I'J_: r =

(200
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The perpendicular componentwf( ¢, , ¢.,r) is determined
from the angular momentum of the initial state as

L:|Iu“sra(¢L1¢Clr)xva(¢L!¢C1r)| (213)
= e T X (Ve T+ 0001 (21b)
=,usv(ur£. (219

From (2139, we conclude that this component of the velocity
is
VI(+1)A

o (22)

UVal =

From conservation of energy, we know that speegd

\/z)zapwzwL of the satellite is

_IE(D V()]
[ —,LL y

(23)
S
so that the radial component of the velocity is
2[E(n,)—=V(r)] I(I+1)4?
Uar:k \/ - 2 2 (24)
Ms st

In the last expression we introduced the indexwhich is
equal to+1 acccordingly as the satellite is receding from or
approaching the corek(t)=—1 for 0<t<T/2 and k(t)
=+1 for T/2<t<T. This analysis yields for the electron
velocity the following explicit expression:

do,

dn"dl’dm’

- 4772]:I'va‘onozwjozwf =l de. T,

xXo(m' —m'[ ¢, (bc,r,kﬂ])vr(d )dQ
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Va(¢L!¢c1r)
—CO_CP_Sh.—S Coh¢
- DR —coy spusperoon oo,
- SO S
\/Z[E(n,l)—V(r)] [(1+1)A?
K - 2.2
Ms st

CO_ChL Chc—Sh S
X| cOLsP Chct+ChL S
—S6, Co,
Equations(199 and(25) give the position and velocity
of the satellite for initial statex and parameters, ,¢., and
t. To find the probability? ,(v,r), we need only convolve the

uniform distribution functions over these variables with
Dirac delta functions that enforce Eq499 and(25)

X P(V=Va(Q e 1) dp dpedt.  (26)
Considerable effort has been expended in determining ex-
plicit forms of the distribution functiorP (v,r) for a Ryd-
berg orbita®* For our purposes, however, the integral form
(26) will suffice, so we need not explicitly evaluate this func-
tion.

(29

P,(v,r)=

C. The transfer function as a one-dimensional
integral over a delta function

We now substitute Eq26) for P,(v,r) into the defini-
tion (17) of the number differential cross section. Changing
the order of integration and integrating oweandr, we find

KQiD)o(I" =1"[ e, 1K, Q1)

d¢ dgcdt. (27)

The factor of 1/4r?T results from the uniformity of the distribution of ¢., and ¢, , with values of 1T, 1/27, and 1/2r,

respectively.

It is convenient to change the variable of integration from tirteethe core—satellite distanceln so doing, we must take
into account that each value pfcorresponds to two values tf Dividing the integration ovet into two parts—one for the
satellite approaching the core, the other for it receding—we obtain

do,

dn’ dl’ dm’

Jr f”fﬁf (' —n'[oy,

877 Up k=T

X o(m' =m'[ L, de, 1K QNP1 v, (f

g
E) in d¢|_ d(f)cdl’,

d)c’ r!k Q; ])5“,_' [¢L1¢Cv r,k QI])

(28)

wherer,, andr , are the inner and outer classical turning points, respectively,Rytd) is the classical probability of

finding the electron at a distancdrom the core. For the two

cases under examination, this classical probability is
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o o2 1 09
A= o (29
( 1
Rydberg electron
e \/—I(I+1)ﬁ2 2¢? et
m(n—46)) t—
! Mse4 ,u,i r? st A%(n— 5I)2
= (29b)
o . .
harmonic oscillator.
—1(1+1)%2  2[hwo(n+3)+Bl(1+1)] , ,
™ 2 2 _(Do(r_ro)
L Mgl Ms

A semiclassical variant of our model could be obtained by replacing this classical probability by its quantum-mechanical
counterpart. We shall examine this alternative in Sec. V.

From symmetry arguments, one can see that the integraf@Bpéloes not depend on the azimuthal angle So we can
reduce the number differential cross section to a four-dimensional integral over three delta functions

do 1 "'mx (27 , , , ,
s ST s 0T r kD a0 - T kD)
pk==* mn

a

X S(m' —m'[ g, 1.k Q.]) Pa(r)vr(%) dQ, de,dr. (30)

We now turn to the remaining integrations. We first evaluate the effect of scattering a satellite with initial velocity
=V, [, dc, 1,k Q] at positionr=r [ ¢ ,¢,r,k Q] by a perturber with velocity/p=vp2 through scattering angleQ;
=(6;,¢;). The center-of-mass scattering ang|ds unambiguously defined as the angle between the initial relative velocity
v—Vv, and the final relative velocity’ _V;;' We define the azimuthal scattering angieto be the dihedral angle between final
relative velocity and the plane containing bathandv—v,. We can then find the final velocity of the electrehfrom the
rotated relative velocity of the collision by applying EG4a. Fromv’ we can find the final energy’, magnitude of angular
momentumL’, and component of angular momentum in theirection L. as functions of, r, k, andQ);, and in turn, the

final quantum numbers’, |’, andm’. Rather than deal with explicit expressions for, |, andm’, it is (much more
convenient to use the related quantities
A= E.,—E, 31
0= (31a
wee? 1 1
- Rydberg electron
h% [ 2(n=68)% 2(n'—4)2
_ , 5 (31b
wo(n'+3)+ ?I "(1"+1)—wo(n+3)— %I(I +1) harmonic oscillator,
|
sl - (V= V) These quantities enable us to separate the dependence of the
AN= — 7 (328  final state orv, andr, from its dependence on the scattering
anglesd; and ¢; , viz,
et o \/Z[E;—V(r)] Ir(|/+1)h2 Aw Sinei COSo; 0
Tk s e AN | =A| sing;sing; | =Al w—[ 0| |. (39
Am cosh;—1 1
2[E,—V(n)] 1(1+1)h?
-k - (32D In this expression, the three-component veetois defined
Ms qusr as
and Sin B; COS;
w=/| siné;sing; | . (35

Am=(m'—m). (33 coso,
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The matrixA depends on the initial experimental conditions, which in this model are described by the vamgblgs, r,
vp, N, I, m, and¢.. Specifically, this matrix is given by

T MsUpUap 0 Ms :U’svr2 MU p(vaz_vp)
h mstmy h fi
_ mp Ms[(vaz_vp)(rUar_zvaz)_zvip] —Mmuv, Ms(rvar_zvp) (36)
IU'S+ mp vap ﬁ Uap ﬁ
m(vaz_vp) Msvr(rvar_zvaz) m
Uap U gl
|
The matrixA contains the additional quantities We could, of course, invert Eq3139), (329, and(33) to
_ : obtain the final quantum numbers. A preferable approach,
Vaz="Ua COYSH oSNy, (373 however, is to change the delta functions froni,(’,m’)
Vap=Ua\1—COS(B+ e)SI? 0, (37b  space to fw,AN,Am) space, as
z=—r sinf, cosg.. (370

o(n"=n'[éc, 1k, Q]) 61" =1"[ e, 1K Qi])
Xo(m' —=m'[ ¢, e, 1K Qi])
= 8(Aw—Aw[ b, ,kQT) S(AN—AN ¢e, 1,k Q.])

The angled, is the spherical polar angle given by H48),
and g is the angle defined by

g U k\/l 1(1+1)52 a7 o ara

cosB=—= - ,

Va 2[E,—V(r)]psr? ><6(Am—Am[¢c,r,k,Qi])—‘?( ©.2N. m). (39
an",I",m")

sinp=\1—cos B. (378 \where the Jacobian is

Operationally, it is useful to express the quantitgs v, ,

andmin the matrixA in terms ofv,,, v,, 6., B, andé., as I(Aw,AN,AM) '+H% o E
[ ] _ 2 n’ a'
vr=\/vi-l-vg-l-ZUavpCOS{,B-i-d)c)sinHL, (379) an’,1",m’) Kl Uy f ‘
a(l"+3h
U =0,CO0Sp, (379 :niPa,(r). (39
Mel
m= MCOS&L sing. (37n  The parametey; depends on the perio’ and energye’ of
h the final state, as
These substitutions render all the variableg\imdependent
of one another, an important simplification for the evaluation T 9 Ey

of expressions involving this important matrix. Note that for 77:‘ 2=k (40)
a forward-scattered satellite, no exchange of momentum oc-
curs between the satellite and perturber. In this case, theor both Kepler orbits and the harmonically bound rigid ro-

vector  (w,,wy,w,—1)=(sinf cose;, siné sin g, cosé tor, n=1.

—1) vanishes, anddw, AN, and Am become zero as re- With this substitution, the number differential cross sec-

quired. tion becomes
do, n(l'+3)h wa erxfzw
= S(Aw—A LK QD) S(AN— AN e 1K, Q;
dn/dI/dm/ 41u“svp k=2tl 0 fon 0 ( w (,()[d)c I]) ( [¢C |])
v, [ do
><5(Am—Am[¢>c,r,k,Qi])(S(W’Z—1)Pa(r)Pa,(r)T FTON 2w'2d ¢ drdQ; dw’. (41)

i

In addition to replacing the delta functions, we have added an integration over a dummy variabééthout affecting the
value of the integral, this additional integration allows us to switch from a spherical polar integratiow Gvdf); dw’ to a
Cartesian integration with volume elemetiw= dw, dw, dw,. We can then use E¢34) to evaluate the integral overw,
obtaining
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do,
dn’dl’ dm'’
n(l"+3)h fmx (27 1
B 2110 p kZZil k’zEtl frmnfo [detA]
) v, [ do
X S(w _1)P“(r)P“'(r)T(d_Qi) de.dr, (42
wherew? is the square magnitude of the vectorgiven,
according to Eq(35), by
Aw
AN

Am

0
w=A"1 +{ O (43)
1

The summation ovek’ accommodates final states in which
the satellite either approaches or recedes from the core. This

integral can now be recast in the form of E8) by defining
the transfer function

n(I"+ Ak f 1
T, o(vy,1)=——— ]
(p.r) 2usvpl (2 k’:Etl |detA| ( )
o
X v, —in doe. (44)

An algorithm for evaluating the integral i@4) is presented
in Sec. IV.

D. The reaction polynomials

The values of¢, for which the termw?—1 appears in
the delta function in Eq(44) are the key to reconstructing

the trajectory of a state-to-state collision that has occurred gt . . /= 0. the functionG( 6,

a C-S separation To obtain such a trajectory from v,
(n,I,m) and (0',I",m"), we first determine the values @,

at whichw?—1 vanishes. From this we find the initial ve-

locity v and the displacememt within an arbitrary rotation
of the system by, , by applying Eqs(199 and (25). We

evaluate the scattering angl8s of the trajectory from Egs.
(43) and(35), and then the final velocitieg andv[’). These
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The momenta in this expression are
Pa=MsV o= V2udE,—V(r)], (450
and
Pp=MpUp, (450
and the function& (6, ,¢.) andGy(6, ,¢.) are
4
G(6,, )= >, ai(siné, sing,)' | +sin6, cose,
=0
3
x| > bi(sing, singe)' |, (459
=0
a
G 0L:§-¢c
Go(O , )= ——F
o( L. dc) Sir? 6.

1
+ cos¢c( ZO d; sinl ¢c) .

(45f)

2
=(Zocisin‘¢c

Notice thatw?— 1 does not vanish ab.=0. Table | contains
the coefficientsa; and b; of the functionG(6, ,¢.) and
Table Il the coefficients; andd;. ProvidedG(6, ,¢.) has
no roots in common withdetA|2, the quantityw?—1 van-
ishes at the zerog. of G(0, ,¢.). We evaluate these zeros
as the roots of the eighth-order “reaction polynomial”

2

4 3 2
Rxn(x):(_z,0 ax | —(sir? 0L—x2)(26 bixi) . (463

¢.) can be expressed as
the series

2

2 2 1
R‘x’n(x>:(20cixi) —(1—x2>¢c(20 dixi> .

(46b)

The roots of Ry,(Xx;) and Rgn(xi) give the values of
sing_sin¢. for the allowed trajectories for a transition

steps narrow the collision to a handful of allowed trajecto-(n I,m)—(n’,I’'m’). One can determine the corresponding

ries.

To find the values ofg. of these trajectories we now
derive an explicit expression fov2— 1. Using Kramer’s rule
to find w from Eq. (34), then simplifying the resultexten-
sively), we obtain

4 2.4
Mp Mslr 5G m=+=0 orm’ #0
W 1o my+ us/ (A detA)
mp 4,“50?5“124’0 o
—Gy M m’'=0,
my+us/ (i detA)
(453
where

detA=[p,(1—cos ¢, sir? 6.)+p, SinBsin b, sing,]

(Mpps)® (rzv?)

(my | % e

values of¢. by evaluatingG(6, ,¢.) or Go(6, ,d.) at ¢,
=arcsing /sing) and at ¢.=m—arcsing/sing) and
choosing the angle for whiolw?— 1 vanishes. It is then rela-
tively straightforward to determine the transfer function from

1
|<9¢CG|

PPN

k=+1k/'==1 ®c,i

n(l"+Pr
2

Taa’(vpar):

X || 1—cog ¢ sirf 6,

Pa

+ (47)

) ) ) do
sinBsin g, sin d)c( dT) }

pp ¢c,i ‘

For the special cass=m’=0, the quantity|d, G| should
be replaced with sf|dy Gol.
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TABLE I. Coefficientsa; andb; for the evaluation of5(6, ,¢.) andR,, can be generated by multiplying each
table entry by (?u2/A3M?).

i a;(h3M2/r?u?2) b;(£3M2/r?u?)

0 25 p (1e)r CO+[A%CO? p5+p*(M) 1 —2ANp(M)pyhice

1 2papp p(ps— M) COSB+2p,p,SB (AM?+ANZ cH)h 2ANpPEp,I SB CO?

) 2(p3(2 p(1s) — paSBAM)I CO+MAw pir?sp?) 2ANpy(pir sp?
+(A2pg+A)\ZSﬁ2pi+(A)\CB Pa—MT1 AR +(MrAw—ANp,cB)h)

3 20pPaSBIAN CB p, T +12(My— n) Aw+AN?H] 2AN p2p,rSpB

4 2p3r(CB ANp,—T Aw o)

p(y)=p.(Am sB+AN cBch)—yr Aw b,
M=m,+us, cO=cosf , sB=sinf, cB=cosp, A’=AN2+An?

IV. SYSTEMATIC EVALUATION OF THE ENERGY (3d) Each zerox; between—1 and+1 corresponds to
TRANSFER FUNCTION an allowed trajectory of state-changing collision from an or-

We present here a step-by-step procedure for evaluatinkg"t W|th an initial Runge—Lentz vecto.r defined ¢, where
the transfer functionT, ., from the initial state o  SINOLSINd=X. For each x, first evaluate ¢,
—(n,I,m), the final statex=(n’,1’,m’), the relative veloc- = arcsiix/sin6 ] and ¢._=m— ¢, . Then, to determine
ity vy between the CS system and the perturethe dis- the allowed trajectories, examine the functic@g(6, ,¢.)
tancer between the satellite S and core C, the differential E. (45f)] for m=m’=0 or G(6, ,¢.) [Eq. (458] for any
cross sectiondo/dQ); of the free X—S collision, and the Other combination ofmandm’. Thus, form=m"=0, if ¢,
masses ofn., ms, andmy of the core, satellite, and per- corresponds to an allowed trajectory, th€np(¢c.) will
turber, respectively. We also describe our numerical verifiequal zero. If, howeveiGo(¢.-) is nonzero, thetG( )
cation that this algorithm obtains all allowed trajectories andWill be zero, in which casep., corresponds to an allowed
no false trajectories. trajectory. Similarly, form#0 and/orm’#0, if ¢., corre-

Step 1: Reformulate the scattering problem in terms of &ponds to an allowed trajectory, th&fe. ) will be zero. If
core of infinite mass by calculating the reduced masof  not, thenG(¢._) will be zero, in which casep., corre-
the satellite—core system from E@.4e, the effective mass sponds to an allowed trajectory. In this manner, determine
m, of the perturber from(14d), and the effective relative the valuesg; for each—1<xj=<+1 that causes the func-
speedv, from (13). tion G(6, ,¢.) to become zero.

Step 2: Evaluate the initial speed, from the conserva- (3e) Use EQs(36) and(37) to evaluate the matriA for
tion of energy equatiori23) and the radial component of each value ofp;. Invert this matrix and evaluate the center-
velocity from (24) to within a signk. Then calculate the of-mass scattering anglés and ¢; using Eq.(35).

momentap,,= usv, andp,=m,v,, and the angleg from Step 4: Use Eq(47) to evaluate the transfer function.

Eqgs.(37d) and(37e, and 6, from Eq. (18). To verify this algorithm, we examined several cases for
Step 3: Repeat the following steps for each of the four‘missing trajectories” and “false trajectories.” By a miss-

possible combinations of sighs= =1 andk’=*1. ing trajectory we mean an allowed state-changing trajectory
(38 EvaluateA w, AN, andAm from Egs.(319—(33). that is not found from the roots of the reaction polynomials.

(3b) For m=m’=0, evaluate the coefficients andd; To test for this possibility, we performed a Monte Carlo
from Table II; for all other combinations oh andm’, cal-  simulation of scattering events for arbitrary initial conditions
culatea; andb; from Table I. and scattering angles. For each event, following steps 1-3

(30 If m=m’=0, find the zerogx;} of the reaction recovered the correct scattering angtesnd ¢; , verifying
polynomial Rgn(x) of Eq. (46b). For all other values om  that this algorithm identifies all allowed trajectories.
andm’, find the zerogx;} of Ry,(x) defined by Eq(463. By a false trajectory we mean a set of scattering angles

TABLE II. Coefficientsc; andd; for the evaluation ofGy(6, ,¢.) and Rgn can be generated by multiplying
each table entry byrfu2/43M?).

i Ci(h3M2/r2u?) di(A3M2/r2p2)
0 2mpA2wr22pis,822-2F[(pgA)\2—M r Aw cp)? 2AN plp3rsp?
+ P AN+ M2 Aw” sB%]h +(MrAw—p, AN cB)A]
1 20, PaSBIANT p, CB+(My— ) 1% Aw+AN?] 2AN pip.r B
2 2p5r (AN pCB— sl Aw)

M=m,+us, co=cosf , sB=sinB, cp=cosp
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determined from steps 1-3 that does not correspond to an the number differential cross section, the cross section for
allowed state-changing collision. To test for this possibility, small bin sizes agrees with the number differential cross sec-
we proceeded as follows. As we evaluated the transfer funaion far better than does the result fde= 1. (As these results

tion T, we used the value ab; from steps 1-3 to find the were generated with completely different algorithms and
initial velocity and position of the satelliter,, andv, [see  computer codes, they also verify that in the linit=0 the
Eqgs.(199 and(203]. We then used the scattering angis  classical trajectory and number differential cross sections
and ¢; from step 8e) to evaluate the final velocity, and  agree, thereby confirming the latter calculatjols dis-
positionr,, of the satellite. In all cases, we verified that ¢,556( elsewhere in this paper, the spikes in the cross section

':)hese ,qula}ntltleds did ('jn fact corrgsporr]]d t% thelqugr;]tun:jnumror small A arise from constraints on the scattering process
ersn’, I, andm’, demonstrating that the algorithm does . ' ' (assical model.

not produce false trajectories. Considering the nature of the process we are trying to
model, thequantitativedisagreements between our number
differential cross sections and the quantum-mechanical im-
Transfer functionsT, . for the Ca—He scattering pro- pulse results are not surprising. We consider two features of
cess(1) are shown as a function of the Ca—He veloaity  the comparison in these figures to be significant. First, the
and the distancefrom the Cd core to the Rydberg electron gyerall agreement in magnitude between the classical and
in Fig. 3. This transition can occur at any of the values f 4 antal cross sections validates using large-scale features of
andr shown, but the cross section is dominated by transiyhe cjassical cross sections to qualitatively interpret large-

tIT)I”IS either cIc&ge to thel core orr] at one or two d'Sﬁremscale features of the quantal results. Second, the clear pres-
electron—core distances. [t Is perhaps not surprising that sg,.q o alignment phenomena in the classical cross sections
severely constrained a scattering process is dominated by

: S : the partial magnetic sublevel cross sections for diffefent
few orbits. More surprising are the spikes that modulate( P g . ) e
e ; . -are not equalsupports an interpretation of these phenomena
these transition “ridges.” These spikes are not those seen i .
ased on the present classical model.

the quantum impulse or time-dependent semiclassical results . - .
d P P Although them=0—m’=0 cross section exhibits sig-

of Fig. 1; the latter shows only relatively gentle oscillations
arising from purely quantum-mechanical interferencenlflcantly more structure than the other state-to-state cross
phenomend. sections, the difference in transfer functions between the

Convolution of the transfer function with initial and final various transitions is less remarkable. The transfer function

radial probability functions for the Rydberg electron yields for €achm—m’ transition is nonzero at the outer classical
the number differential cross section. This raises the questiofrning point, but fom=0—m’=0, particularly strong fea-

of whether to use the classical radial distributié(r) tures appear in this distant region. Because these features
=2/T|v,,| or its quantum-mechanical counterpart in thesecorrespond to positions where the classical radial probability
calculations. The differences between these distributiolistribution is infinite and the quantum radial probability is
functions(see Fig. 2 of Ref. 31suggest that they may yield large, they dramatically affect the number differential cross
qualitatively different cross sections. sections.

To completely isolate the effects of quantizing the initial Although we originally developed this model to study
and final energy and the angular momentum from all othethe qualitative dependence of these cross sections on relative
quantum-mechanical features, one would use the classicgklocity, it can also be used to estimate quickly the cross
radial distribution. If, however, one seeks a more rea"StiCSection for a Scattering process interest and to determine
model—e.qg., for comparison to quantal calculations or eXwhether a particular process will be most sensitive to colli-
perimental data—then one may prefer to use the quantumjons that happen close to or far from the core. We caution,
mechanical radial probability density. In either case, once thﬁowever, against using it for quantitative predictions. To il-

transfer function has been calculated, cross sections are €3Sstrate. we show the total cross section for thel 17.8p
ily obtained. Figure 4 compares the number differential Cros?ransitic;n in Fig. 6. While both the quantum and number

S:ECtI(?I’]Sl o ghe quatntal reSL;]Its .Of Ilsazpsl ?nd tMor?lsfon differential calculations prediafualitatively similar depen-
classical and quantum-mecnanical radial TUnctions, respeq o o relative speed, the quantum cross section is roughly
tively. For this scattering process, the two sets of cross S€C; ¢ ctor of 2 stronger and does not displa {spurious
tions are similar enough that either can be used to qualita- 9 play 15p

tively interpret certain aspects of the quantal results. Thé%pikes that appear in the classical cross section. Nor does the

small-scale structures and the occasional narrow spikes aﬁ%assical model invariably predict the relative strength of

both artifices of the classical model alignment effects at a particular relative velocity, as is evi-

In Sec. Il we noted the relationship between our numbefi€nt from the state-to-state cross sections in Fig. 7. Also
differential cross section and the conventional classical crosgnoWn in Fig. 7 is the relative Ca—He velocity distribution
section, Eq(8). To clarify this relationship, we have evalu- for an experiment analogous to those Spetial. performed
ated the right-hand side of this equation using Monte Carl®n Ca—Xe scatterinyf. For such agedanken experimerthe
integration with varying bin sized. In Fig. 5 we compare quantal cross sectiohs predict ¢°(v)=37aj, o'(v)
these cross sections as a functionfoffor the m=0—m’  =67aj, and o®(v)=50a3, while the appropriately aver-
=0 transition. As this parameter decreases, the cross seaged number differential cross sections a&(v)=45ag,
tions change dramatically. Apart from tligpurious spikes  o*(v)=29aZ, ando?(v)=31a2.

V. RESULTS FOR CA—-HE COLLISIONS
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L -
m'=0 m'=1 |m=0-|m]=1

O ( bohr®)

G (bohr®)

G (bohr?)

m=2,

1000 2000 3000 1000 2000 3000

v ( ms'1) v{ ms'1)

FIG. 4. Comparison of classical and guantum-mechanical state-to-state
cross sections for 17—~18p transitions in Ca—He scattering. Thin solid
line: classical results calculated from the classical radial probability distri-
bution. Dotted line: classical calculations based on the quantum-mechanical
radial probability density in the convolution integral of E§). Thick solid

o\

‘o

FIG. 3. Surface plots of the transfer functidn, ,/(v,,r) for the 14
— 18p transition in Ca—He collisions. This function, plotted on the vertical

axis, ranges from 0.0 to 1:010°a;. [The transfer functions forr(l,m)  jine: quantum-mechanical results of Isaacs and Morrigeef. 2. Dashed
—(n",1",m’) are rigorously equal to those fon(,—m)—(n",I’,—m’) line: cross sections from a classical trajectory calculation of the right-hand
and are equal to graphical accuracy to those for,(m)—(n’,I’,—m’) and side of Eq.(8) with A=1.0.

for (n,I,—m)—(n’,I",m"). Hence, we do not show these cases.

VI. CONCLUSIONS

The classical model described in Secs. Il and Il and 80 =
schematized in the procedure of Sec. IV yields the numbel
differential cross section defined in E@) (in the point con-
tact approximationin terms of the transfer function of Eq.

(44). On can use the step-by-step algorithm in Sec. IV to
determine this function from the masses of the core, satelliteq™
and perturber, and the differential cross section for elastic %
scattering of the satellite by the perturber. These calcula- ©
tions, and subsequent evaluation of the number differential g
cross section, can be performed in short order usingH-
EMATICA on a personal computefReaders interested in us- 20 -
ing this algorithm can download RATHEMATICA notebook
and accompanying package from one of the authors’ wek

©

sites®®) One can use the results to estimate the magnitudes o o A B
state-to-state cross sections and to quantify the effect of con 10'00 15'00 20'00 25'00 30'00 35'00
straining the initial and final state on the distance between v (ms™

the core and satellite during energy transfer.

The transfer functions for the #i7-18p transitions in  FIG. 5. Classical state-to-state cross sections for thie-178p transition in
Ca—He scattering reveal discrete regions in phase space tt%-“elscaﬁefing f°|"“|§0—*|(;“'b\:g(- )Lighlt dOItﬁd line: the number dif-

. . . rential cross section defined by E). Also shown are cross sections
dominate this prqcess. The hlghly structured depend_ence {‘)r?om an independent, Monte Carlo classical trajectory calculation of the
the transfer function on scattering angle leads to conmderabkgght_hand side of Eq(8): A=1 (thick solid lin®, A=0.5 (heavy dotted

small-scale structuréand the occasional spikén the num-  line), andA=0.1 (regular solid lin.
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APPENDIX: DERIVATION OF THE NUMBER
DIFFERENTIAL CROSS SECTION FROM THE
BOLTZMANN TRANSPORT EQUATION

200

150
We assume without loss of generality that the masses of
the cores are much greater than those of any other particles
in the system(see Sec. Il A. Then, a classical state of the
system can be described by the distribution functions
50 {F(rs.ve),G(R;,Vp)}, whereF(rs,vq) refers to satellite po-
sitions and velocities with respect to ttsationary core and
. , . . G(R,,v,) refers to perturber positions and velocities with
1000 1500 2000 2500 3000 3500 respect to the origin of a laboratory-fixed frame. Boltz-
v(ms?) mann'’s transport theory then gives the time-dependent evo-
FIG. 6. Total cross sections for d7-18p transitions in Ca—He scattering. [Ution of the system due to core—perturber collisions in terms

Solid line: the classical number differential cross section. Dotted line: theof the coupled set of integral-differential equations
quantum-mechanical results of Isaacs and Morrigoef. 2.

100

G (bohr?)

ot ot are ot Y
ber differential cross sections. These arise purely from pos- S
tulating quantization of the initial- and final-state energy, an- do .,
gular momentum, and projection of the angular momentum +f f Ur d_Qi)[F(rs’Vs[Vs Vo il
on an axis coincident with the initial relative velocity. We
emphasize again that these structures are not those of the X G(Rp,Vp[ Vs, vy, Qi])]

qguantal cross sections, which arise from quantum-

mechanical interferenceNor are they conventional scatter-

ing resonances. From the classical point of view, these struc- 9G(R, ’Vrf)) IR, &G(RP’VF,’)ij f
= ur

—F(re V)G(R, v O dv,  (Ala)

A do
tures are expected, as a consequence of the sharp oscillations a0
i

in the state-to-state transition probabilities as a function of

!
ot &Rp

the relative collision speed and the core—satellite distance. In XIF(re, v VL v, Q1)
. . . s1Vsl Vg1 Vp a5
a conventional semiclassical treatment such as that of Mor-
rison et al,® the uncertainty principle blurs simultaneous XG(Rp,Vplvg, vy, Qi])}

specification of the relative speed and distance, smoothing
out these structures.

The F“Od‘fl'. r.esultsfln Sec. V show thﬂt ?,l'gn"é]i?td%he‘rhe first two terms on the right-hand side (@f1a) describe
nomena in cof |S|on§ of rare-gas atoms W'é ama}ne ".y. ethe evolution of the classical distribution functi®i(r,v,)
atoms arises from the constraints imposed on the collision by o satellites move in their orbits without undergoing col-

congervgﬂon of energy and angular momentum. In a fUtur‘ﬁsions. The integral term is the contribution to the evolution
publication, we intend to apply the present model to more

. . . X of F(rs,vs) from satellite—perturber collisions. The vector
conventional heavy-particle scattering problems using th

4 o ) unctionsvg[ vg vy, €] andvy[vg, v, ,Q;] are the initial ve-
model O.f a harmomcally bound rigid rotor using results thatlocities for a satellite and perturber that scatter through angle
appear in this paper.

; to produce final velocities; andv), .

In an ideal scattering experiment, we study the formation
of the final state a very short time after creation of a well-
defined initial state represented H¥(rs,vs),G(Rp,Vp)}

We acknowledge the support of the Petroleum Research {f,(rs,Vs),00(R;,V,)}. Because we are interested in ex-
Fund (No. PRF 32187-Gp the National Research Council periments in which a very small fraction of the perturbers
(No. NRC-6224, and the National Science Foundati@o. and satellites collide before a measurement is made, we as-
PHY-9722055 sume the perturber distribution function is unchanging, i.e.,

—{F(rs,v))G(Ry,vp)} dQ;dvy.  (Alb)
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FIG. 7. Partial magnetic sublevel cross sectiaﬁ@l(v)

for 17d—18p transitions in Ca—He scattering. Solid
line: cross sections calculated from classical number
differential cross sections. Dotted line: quantum-
mechanical results of Isaacs and Morris(Ref. 2.
Dashed line: a typical relative velocity distribution for
0 T T T T . T T T T T T T T scattering experiments such as those of Ref. 25.
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G(Rp,Vp) =00(Rp,Vp) =Np8(Vp— Vp pean - (A2)  &3(vs—v V. Vg, Qi) 83 (Vp—Vp[ Ve Vg, Qi)
Here,n, is the number density of perturbers angyeamis = 33 (Vg— V[ Vs Vp 1) 83(Vp—Vyl Vs,V . 1) . (A9)
th locity of i tall d bedith b-
e velocity of an experimentally prepared bedithe su By substituting Eqs(A2) and (A9) into the right-hand side

script “beam” appearing in this Appendix has been sup- ) / , i
pressed in the body of this papedsing this substitution and of Eq. (,A7) and !ntegratm_g ovev, andv, one_fmds the rate_
I'(rs,vg) at which satellites are scattered into new orbits

F(rg,ve)="f,(rs,ve)+T(rs,vs), (A3)  with positionsrg and velocitiess , viz.
the Boltzmann equation becomes () af(rs,vh)  arg af(rg,ve)  avg af(rg,ve)
re,Vl)= += — :
F(re VD) arg at(rg,vl) vy O (g, V) A A108
ot at org Y
J [ ] ol
do . =MNp Url g | TallssVs
[l g et .00 a0,
I

X 53(V;_Vé[vsavp,beam:9i]) in st- (AlOb)

The functionT'(rg,v;) can be convolved with the delta-
—f4(r,ve)go(Ry,Vp) 1 dQ; dvy. (A4)  function probability distribution for a satellite described by
rs andvg having quantum numbens’, |’, andm’ to pro-
duce the rate at which final states are formed

X go(Rp,Vpl Ve vy, Qi])

In Eq. (A4) we have assumed that the initial CS stéfe
satisfies the steady-state condition

arg df ,(rs,Vs) N Vg If ,(rg,Vs)

Conyr = J F(I’S,Vé)ﬁ(n’ _n,[rSaVSva,beavai])
(A5)

a arg v, O o
. . . . Xﬁ(' -1 [rsavsvvp,beamvﬂi])
The integral term in Eq(A4) consists of a positive con- ) ) ,
tribution from collisions that scatter into final state, (v.) X S(M'—=m'[rg,Vs,Vp beam2i]) drsdvg  (Alla)
and a negative contribution from collisions that scatter from do
initial state ¢,v.). Because we are interested in the creation = npnCSJ J f ur(m) P,(vg,rg)
|

of a new CS state, we evaluate the functfaat values ofr
and v, that correspond to an energy or angular momentum X&(n"—n'[rg,Vs,Vp peam i)
which is different from that of the initial state. So, we may

assumef ,(rs,v.)=0, where XS(1"=1"[rs,Vs,Vp beam i)
X r_ ! . .
Mravy) g df(ravg) vy af(re,vy) &M’ —m'[rg, Vs, Vp peam 2i]) dQ drsdv(sAllb)
g gt arg it v do
=v,NyNes—————. (Al10)
do o PP dI’ dmy

+ Ul go falrs, Vel Vs, Vvp,Qi]) _ - _
i In Eqg. (A11b) we switched from the distribution function
X go(Ryp Vo[ V4 V5, ;1) d€; dvy. (AB) f(rs,Vs), which is normalized to the total number of satel-

lites per unit volume, to the classical distributi®n(vs,rs),
We now introduce delta functions over two new variables ofwhere
integration,v,, andvs, to obtain

folrs,Vs) =NcgPo(Vs,T's) (Al2a)
&f(rs,Vg) n % af(rs,vs) % af(rsaVs) and
at ot arg Y
q f P,(vs,rg) drgdve=1. (A12b)
(o
:f f f j ur(d—m>fa(rs,vs)go(Rp,vp) Equation(7) follows immediately from Eq(Allc).

! ! ! li
X b\g(VS_VS[VS’VP’Qi]) é\g(vp_vp[vs’vp’ﬂi]) LE. Fermi, Nuovo Cimentdl, 157 (1934.

2W. A. Isaacs and M. A. Morrison, Phys. Rev.5, R9 (1998.

!
xd€; dvp dVP dvs. (A7) 3M. A. Morrison, E. G. Layton, and G. A. Parker, Phys. Rev. L&#.1415
. . .. (2000.
Because the Jacobian of a translation followed by rotation isi\; " "Haje and S. R. Leone, J. Chem. Phys, 3352(1983.
unity SM. O. Hale, I. V. Hertel, and S. R. Leone, Phys. Rev. LB8&(24), 2296
(1989.
a(Vs.Vp) ®w. Bussert, D. Neusclier, and S. R. Leone, J. Chem. Phy¥, 3833
— =1 (AS) (1987.
d(Vg ,vp) 7J. P. J. Driessen and S. R. Leone, J. Phys. Cl&816136(1992.

] ] ) 8R. I. Robinson, L. J. Kovalenko, and S. R. Leone, Phys. Rev. Bétt),
the product of delta functions in EGA7) can be written 388(1990.



J. Chem. Phys., Vol. 113, No. 10, 8 September 2000 Collisions of He atoms with Rydberg Ca atoms 4289

9E. E. B. Campbell, H. Schmidt, and I. V. Hertel, Adv. Chem. PW%.37  25J. K. Badenhoop, H. Koizumi, and G. C. Schatz, J. Chem. P3iys142

(1988. (1989.
10A. Berengolts, E. |. Dasevskaya, and E. E. Nikitin, J. Phy26B3847 25T peng, D. H. Zhang, J. Z. H. Zhang, and R. Schinke, Chem. Phys. Lett.
(1993. 248 37 (1996.

"A. P. Hickman, R. E. Olson, and J. PascaleRydberg States of Atoms 273 Hare, M. Gross, and P. Goy, Phys. Rev. L&t 1938(1989.
and Moleculesedited by R. F. Stebbings and F. B. Dunnii@gambridge 285 B Hansen, T. Ehrenreich, E. Horsdal-Pedersen, K. B. MacAdam, and

University Press, Cambridge, England, 1983hap. 6, pp. 187-228. L. J. Dube Phys. Rev. Lett71, 1522(1993

12 ! ENE . . , .

13|' L. Beigman and V. S. Lebedev, Phys. R&50, 95 (1993. 293, C. Day, T. Ehrenreich, S. B. Hansen, E. Horsdal-Pedersen, K. S.
E. M. Spain, M. J. Dalberth, P. D. Kleiber, S. R. Leone, S. S. Op de Beek

' Mogensen, and K. Taulbjerg, Phys. Rev. L&®, 1612(1994).

and J. P. J. Driessen, J. Chem. PHy@2 9522(1995. 30 .
; ; K. S. Mogensen, J. C. Day, T. Ehrenreich, E. H. Pedersen, and K. Taul-
14
E. M. Spain, M. J. Dalberth, P. D. Kleiber, S. R. Leone, S. S. Op de Beek bjerg, Phys. Rev. /1, 4038(1995.

and J. P. J. Driessen, J. Chem. PHy@2 9532(1995. 31|, Samengo, Phys. Rev. B8, 2767(1998.

5W. A. Isaacs, Ph.D. thesis, University of Oklahoi£96. 2
16G. C. Schatz and A. Kuppermann, Phys. Rev. L&%.1266(1975. C. E. Burkhardt and J. J. Leventhal, Phys. Rewd3)110(1991).

17E Webster and J. C. Light, J. Chem. Phgs, 4744(1986. 33y, M. Borodin, A. K. Kazansky, and V. I. Ochkur, J. Phys. 25, 445

18F. Webster and J. C. Light, J. Chem. Ph98, 300 (1989. 1992

19p_ G. Hipes and A. Kuppermann, Chem. Phys. LE8G, 1 (1987. D. Vrinceanu and M. R. Flannery, Phys. Rev. L&2, 3412(1999.

20\ Mladenovic, M. Zhao, D. G. Truhlar, D. W. Schwenke, Y. Sun, and D. >_T- P Hezel, C. E. Burkhardt, M. Ciocca, L.-W. He, and J. J. Leventhal,
J. Kouri, Chem. Phys. Letfl46 358(1988. 36Am- J. Phys60, 329 (1992. ‘

2LM. Mladenovic, M. Zhao, D. G. Truhlar, D. W. Schwenke, Y. Sun, and D. “From  the  URL www.nhn.ou.edu/"morrison/Research/
J. Kouri, J. Phys. Chen®2, 7035(1988. Papers/ , please navigate to the entry for this paper; there you will find

2@, C. Schatz, Annu. Rev. Phys. Che®9, 317 (1988. download links for the accompanyingaTHEMATICA materials. We wel-

233, Z. H. Zhang and W. H. Miller, Chem. Phys. Let63 465 (1988. come feedback from users of these materials and may issue revised ver-

24D, E. Manolopoulos and R. E. Wyatt, Chem. Phys. L&f9, 123(1989. sions in response.



