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A classical ensemble model of three-body collisions in the point contact
approximation and application to alignment effects in near-resonant
energy transfer collisions of He atoms with Rydberg Ca atoms

Neil E. Shafer-Ray, Michael A. Morrison,a) and Gregory A. Parker
Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019-0225

~Received 29 November 1999; accepted 31 May 2000!

A classical ensemble model of three-body energy transfer in the point contact approximation is
presented. This model yields cross sections for transitions between initial and final states defined by
energy, magnitude of angular momentum, and projection of angular momentum along an axis of
spatial quantization corresponding to the quantum numbers of the initial and final stationary states,
n,l ,m andn8,l 8,m8. Using a cross section that is differential in the final-state quantum numbers, the
spatial constraints imposed by conservation of energy and angular momentum can be investigated
even for comparatively small quantum numbers. When applied to the Ca(17d)1He→Ca(18p)
1He energy transfer processes, the model sheds light on recently discovered alignment phenomena
in collisions of rare-gas atoms with initially aligned Rydberg atoms. Materials for the
implementation of this model are available from the authors via the Internet. ©2000 American
Institute of Physics.@S0021-9606~00!03032-4#
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I. INTRODUCTION

In this paper we present a classical transport mode
energy transfer in heavy-particle collisions within the Fer
point contact approximation.1 Although fully classical, this
model incorporates quantization of energy and angular
menta in both the initial and final states. As a first applicat
of this model, we consider near-resonant energy transfer
lisions involving initially aligned Rydberg Ca atoms and
rare-gas perturber: specifically, the scattering process

Ca~4s17d 1D2!1He→Ca~4s18p 1P1!1He . ~1!

Recent experimental and theoretical studies of s
collisions2,3 have raised provocative qualitative questio
which the present classical model can address. No clas
model can, of course, produce quantitatively accurate c
sections for such a system. Our classical cross sections
however, in sufficient qualitative agreement with quantu
mechanical results that we consider their implications
evant for the actual scattering process. Moreover, this mo
can yield insights that would be difficult to glean from fu
quantum-mechanical investigations. For example, for
Ca–He collision~1!, we have determined the transition pro
ability as a correlated function of the relative velocity of t
rare-gas projectile and the distance of the Rydberg elec
from the Ca1 core at the time of the collision. This probabi
ity clarifies whether the interaction occurs far from the co
where the Coulomb wave function describes the electron
near the core, where the core can significantly influence
electron.

In the laboratory, processes such as~1! are studied by
first aligning the initial state of the Rydberg electron~e.g.,
via multiple pulsed-laser excitation!, then analyzing mea

a!Electronic mail: morrison@mail.nhn.ou.edu
4270021-9606/2000/113(10)/4274/16/$17.00
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sured inelastic cross sections for effects such as a de
dence on the angle between the polarization of the exci
laser and the relative velocity of the rare-gas projectile.4–7 If
present, such effects signal that the excited electron ‘
members’’ its initial alignment through the collision.8,7 Until
recently, all investigations of alignment in near-resonant
ergy transfer collisions have considered targets inlow-lying
excited states, not Rydberg states.7 For such targets, the
qualitative explanation of alignment effects has been pre
cated on the formation during the collision of a transie
quasimolecular electronic state. According to these ‘‘orb
following’’ and ‘‘locking’’ models,5,9,10 the orbital of the
excited electron temporarily couples to the internuclear a
of the quasimolecule. Consequently, depending on the
tance at which the orbital locks and on the symmetry of
resulting electronic state, cross sections may exhibit ali
ment effects of varying degree. Such models, however,
not germane to collisions withRydbergatoms, where the
electron’s comparatively low speed and extremely diffu
probability density invalidate a molecular~Born–
Oppenheimer! description of the dynamics.11,12 Hence, cross
sections for rare-gas collisions withRydbergatoms were not
expected to manifest alignment effects.

Nevertheless, measurements by Spainet al.13,14 revealed
unambiguous alignment effects in cross sections for
17d→18p transition in Ca resulting from collisions with
ground-state Xe atoms at a single mean relative veloc
Quantum calculations by Isaacs and Morrison15,2 confirmed
these results and, by exploring a wide range of relative
locities, uncovered heretofore unknown oscillatory structu
in the cross sections for this transition. These authors a
investigated analogous scattering processes for Ca–He c
sions, finding qualitatively identical phenomena in state-
state cross sections. These findings raised questions con
ing the origin of the alignment effects, the physic
4 © 2000 American Institute of Physics
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mechanism responsible for the oscillations, and reason
their striking dependence on the initial and final magne
quantum numbers of the Rydberg electron.

A coterminious semiclassical time-dependent analysi
the Ca–He system by Morrisonet al.3 revealed the physica
mechanism behind the oscillations in the state-to-state
ergy transfer cross sections3 but left unexplained the align
ment effects themselves. Alignment effects most clea
manifest in partial magnetic sublevel cross sectionss umu(v).
To construct these, one first calculates state-to-state c
sections as a function of the relative Ca–He velocityur for
the transitionsa5(n,l ,m)→a85(n8,l 8,m8) for all mag-
netic quantum numbersm and m8 allowed by the orbital
angular momentum quantum numbersl and l 8 of the excita-
tion (n,l )→(n8,l 8). One then sums the resulting cross se
tions over final statem8 for each initial m. The extent to
which each of the resulting partial cross sectionss umu(v)
depends onumu at a particular relative velocityv is a mea-
sure of the strength of the alignment effect: if these quanti
are independent ofumu, then no such effects are present a
the collision has obliterated all information concerning th
initial alignment of the Rydberg electron.7 Figure 1 shows
pronounced oscillatory alignment effects in partial magne
cross sections for the 17d→18p transition in Ca–He colli-
sions. This figure also illustrates the striking concurrence
cross sections from the aforementioned quantum-mecha
and semiclassical studies. The present classical model c
pletes our theoretical triumvirate of studies of this proble
and provides insight into the underlying physics behind
alignment effects in scattering process such as the on
Fig. 1.

More generally, our model provides an efficient meth
for calculating energy transfer cross sections of suffici
accuracy to provide estimates of quantities needed for
perimental design. In addition, it offers a possible avenue
investigating the appearance in semiclassical or approxim
quantal calculations of false resonances—spurious peak
the energy dependence of the cross section for energy tr
fer processes that do not appear in nature or in full thr
dimensional scattering calculations. A famous example o
‘‘false resonance’’ is the early prediction16–19 of resonant
features in state-to-state integral cross sections for th
1H2 reaction. Subsequent, more accurate calculations20–24

revealed that these structures were spurious. A second
stance is a feature in reduced-dimensionality quantum s
tering calculations for the O~1D!1H2→OH1H reaction at a
collision energy of 0.22 eV.25 This structure does not appe
in the results of the full three-dimensional study of Pe
et al.26

For the Ca–He collision~1!, we find that the classica
transition probability varies greatly with the relative veloci
of the perturbervX and the distancer between the Rydberg
electron and the core. This strong variation leads to spur
peaks in state-to-state cross sections. These peaks cann
flect true resonances, because they are due to featur
classical probability that are much narrower than the de B
glie wavelength of an electron moving with a velocityvX .
That is, structures in the classical phase space leadin
or
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these energy transfer processes are beyond what the u
tainty principle allows.

The broad theoretical context of the present research
for the quantal calculations of Isaacs and Morrison15,2 and
the semiclassical study of Morrisonet al.,3 is the binary en-
counter approximation,11 in which three-body interactions
are neglected and the interaction potential for the system
consisting of a Rydberg electron, the core, and
perturber—is approximated by a sum of two-body intera
tions. We further neglect the explicit core–perturber inter
tion, relegating the core to the role of a ‘‘spectator’’ who
function is to support the~quasifree! initial and final physical
states of the Rydberg electron. Within this context we furth
invoke the Fermi point contact approximation,1 in which the
interaction that governs the binary collision between
electron and the perturber is modeled by a pseudopote
that is proportional tod(r2R), wherer is the position co-
ordinate of the Rydberg electron andR is that of the per-
turber. This approximation is valid provided the correspon
ing cross section depends weakly on the kinetic energy of
Rydberg electron and that the atomic polarizability of t
perturber is small—conditions that are well satisfied by
system at hand. The classical equivalent of the Fermi mo
is the approximation that the electron–perturber encou
occurs only at a single point in space.

Interest in classical treatments of Rydberg states has
creased since it became feasible to create in the labora
mesoscopic atomic states whose evolution can be descr
classically.27–30Although the states of interest in the prese
application are not this highly excited, recent theoreti
work on classical statistical distributions that correspond
quantum-mechanical stationary states31 is highly relevant to
the model we describe. In the context of collisions
ground-state atoms with Rydberg atoms, classical model
angular-momentum mixing,32 of energy transfer betwee
Rydberg states,33 and of the inelastic atomic form factor34

FIG. 1. Partial magnetic cross sections for 17d→18p transitions in Ca–He
collisions. Semiclassical results~points! of Morrisonet al. ~Ref. 3! are com-
pared to the quantum impulse cross sections of Isaacs and Morrison~Ref. 2!
~lines! for um0u50 ~solid line and closed circles!, um0u51 ~long-dashed line
and open triangles!, andum0u52 ~short-dashed line and open squares!.
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have illustrated the ability of classical physics, judicious
applied, to explain phenomena not only for quantum nu
bers large enough to enter the macroscopic realm of the
respondence principle35 but also for lower-lying Rydberg
states, which heretofore had been considered the provinc
quantal or semi-classical descriptions. It is in the spirit
such recent developments that we offer the present clas
analysis of alignment effects in rare-gas collisions with i
tially aligned Rydberg targets.

In the purely classical theory detailed in Sec. II, we
vestigate the effect of constraints on the orbital ene
E(n,l ), the orbital angular momentumL , and the projection
of L on an axis coincident with the initial relative velocity
Specifically,we constrain these observables to be consis
with their values as calculated from the correspondi
quantum-mechanical eigenvalues for initial- and final-sta
quantum numbersa5(n,l ,m) anda85(n8,l 8,m8). In gen-
eral, the issue is how such constraints influence the dynam
of transfer from the internal energy of a bound two-bo
core–satellite~CS! system to the translational energy of
perturberX in the scattering process

CS~a!1X→CS~a8!1X. ~2!

@For the process Eq.~1!, the core is the Ca1 ion, the satellite
is the Rydberg electron, and the perturber is the He atom# In
our model, the size of the satellite’s orbit about the core
much greater than the region in which the perturberX inter-
acts with the satellite. Under these conditions we may inv
the point contact approximation,1 according to which energy
transfer occurs only when the satellite collides elastica
with the perturber at a single point in space.

A simple counting argument illustrates the sever
of such constraints. A collision between a satellite S a
a perturberX is completely described by the locationr of
the point interaction, the velocityvs of the satellite, the
initial velocity vX of the perturber, and the scatterin
anglesV i5(u i ,f i). Thus, in addition tovX5vXẑ, one must
specify eight parameters to describe a scattering ev
Because in the experimental situations of interest the
system is oriented symmetrically with respect to the relat
velocity of the CS–X collision,7 one of these parameters
the angle of an arbitrary rotation of the system about
relative velocity. This symmetry consideration leaves o
seven dynamically significant parameters. Specification
the initial- and final-state quantum numbers for a transit
(n,l ,m)→(n8,l 8,m8) provides six constraints, leaving onl
one degree of freedom. Thus, for a given electron–core s
ration r, only a discrete set of trajectories is allowed for
particular state-changing collision.~As we shall see, a maxi
-
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mum of 32 such trajectories exists, corresponding
the roots of an eighth-degree polynomial and the fo
combinations of signs that specify whether the satellite
moving toward or away from the core before and after
collision.!

While one must turn to quantum-mechanical calculatio
for quantitative predictions of near-resonance energy tra
fer, the classical model described in Sec. II offers a qual
tive picture that allows one to address such issues as w
energy transfer occurs and at what electron speed the c
sion takes place. Section III presents the technical det
needed to implement this model via an expression for
transfer functionTa a8(vp ,r ), from which one can calculate
cross sections that are differential in the final-state quan
numbers

dsa

dn8 dl8 dm8
5E Taa8~vp ,r !Pa~r !Pa8~r !dr, ~3!

wherevp5(mc1ms)vX /mc , with mc andms the masses of
the core C and satellite S andvX the relative speed of per
turberX and the target. The functionsPa(r ) andPa8(r ) give
the electron probability distribution as a function of the C–
distance. As we shall illustrate in Sec. V, graphs of the tra
fer function Ta a8 reveal rich structure due to the spati
constraints imposed by conservation of energy and ang
momentum. Section IV presents a systematic procedure
evaluation of the transfer function. Section V presents res
for the Ca–He process~1! and compares them to those fro
prior quantal and semiclassical calculation. Our conclusi
follow in Sec. VI.

II. AN ENSEMBLE MODEL OF THREE-BODY
COLLISIONS

Our classical picture of near-resonant energy trans
begins in a universe of satellites S orbiting cores C
which they are bound by a central potentialV(r ). If
the potential depends onr as 1/r , as in the Rydberg-
atom rare-gas collision~1!, then this is a universe o
Kepler orbits. In anticipation of our eventual comparis
to quantum mechanics, we imagine that each orbit
total energyEa5E(n,l ), magnitude of angular momentum
L5Al ( l 11)\, and projection of angular momentum
along thez axis Lz5m\. In this paper we apply our mode
to an electrostatically bound Rydberg atom and, in
future publication, will do so for a harmonically boun
molecule in the rigid-rotor approximation; in this section w
shall present results for both systems. Their bound-s
energies are
Ea5H 2mse
4

2\2~n2d l !
2 Kepler orbit

\v0~n1 1
2!1b l ~ l 11! harmonically bound rigid rotor.

~4!
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Here, ms is the reduced mass of the electron–core sys
and d l is the quantum defect. For the harmonically bou
molecule,v0 is the natural angular frequency andb is the
rotational constant.

To determine the velocity of a satellite and its positi
with respect to the core, one must specify three degree
freedom in addition to the aforementioned quantum nu
bers. For these degrees of freedom we choose the an
shown in Fig. 2. This figure shows an orbit with angu
momentumL , Runge–Lentz vectorA, and phasef t in a
coordinate system whosez axis is parallel to the perturbe
velocity. Here,f t is the angle from the Runge–Lentz vect
to the position of the satellite relative to the core at timet,
with f t50 at t50. BecauseA is in the plane of the orbit, its
direction can be uniquely specified by a single anglefc con-
structed as follows. First, define a vectorC along the inter-
section of the plane containingL and thez axis with the
plane of the orbit; the origin ofC is at the center of mass
Then, fc is the angle of the right-handed rotation aboutL
that carriesC to the position vectorr of the electron. The
direction fA of Runge–Lentz vector can then be found
rotating C aboutL through an anglefA5fc2f t . For the
three degrees of freedom we choose: the azimuthal direc
fL of the angular momentum vector, the directionfA of the
Runge–Lentz vector, and the phase of the orbit, as de
mined by the timet it takes the satellite to travel from th
aphelion of its orbit. AlthoughE, L, andLz are fixed,fL and
fA are distributed randomly between 0 and 2p, and t is
distributed randomly between 0 and the classical periodT of
the orbit.

BecauseE andL are conserved, our classical universe
undisturbed, would remain stable forever. However, our u
verse also contains randomly distributed perturbing partic
X, all of which have velocityvX5vXẑ. Occasionally one of
these perturbers strikes a satellite, changingE, L, andLz of
its orbit. We wish to know the distribution in energy an
angular momentum of the orbits that have suffered a co
sion. To find this distribution, we may proceed rigorous
from the Boltzmann equation of transport. Because the fo
of the resulting cross sections are intuitive, we relegate
detailed analysis to the Appendix and simply state the res
here.

If insufficient time has passed to significantly alter t
initial distribution of orbits, then the rate of collisions th
create new orbits is

ka5E E E S ds

dV i
Dur Pa~vs ,r s!dvs dr s dV i . ~5!

Here, ds/dV i is the differential cross section for th
electron–perturber collision,ur5uvs2vXu is the relative
speed of the satellite S and perturberX, andr s andvs are the
displacement and velocity, respectively, of the satellite w
respect to the core. The functionPa(vs ,r s) is the probability
that an electron with initial quantum numbersa5(n,l ,m)
will have position r s and velocity vs . Finally, V i is the
center-of-mass scattering angle of the satellite–perturber
lision. By dividing this rate by the speedvX of the perturber,
one obtains the cross section
m

of
-
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f
i-
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i-

s
is
lts

h

l-

sa5
1

vX
E E E S ds

dV i
D ur Pa~vs ,r s!dvs dr s dV i . ~6!

Within the constraints described above, specification
the initial velocitiesvs andvX and of the scattering angleV i

completely determines the final velocitiesvs8 andvx8 . In the
point contact approximation, the final displacement is eq
to the initial displacement, that is,r s85r s . Thus, fromvs , r s ,
and V i , we can determinevs8 and r s8 and hence the energ
and angular momentum of the final state. Moreover, one
write the final quantum numbersn8, l 8, andm8 as functions
of vs , r s , andV i , although the functional forms are by n
means simple. In anticipation of our eventual comparison
quantum mechanics, we modify~6! to define a cross sectio
that is differential in the final quantum numbers

dsa

dn8 dl8 dm8
5

1

vX
E E E d~n82n8@vs ,r s ,Vs# !

3d~ l 82 l 8@vs ,r s ,Vs# !

3d~m82m8@vs ,r s ,Vs# !

3Pa~vs ,r s!ur S ds

dV i
Ddvs dr s dV i . ~7!

We call this quantity anumber differential cross sectionand
justify its form rigorously in the Appendix.

The number differential cross section is distinct from t
conventional classical cross sectionsn l m→n8 l 8m8

(cl) for produc-
ing a final state with values ofn8, l 8, andm8 within one unit
of the true final-state quantum numbers.31 The two cross sec-
tions are related by

FIG. 2. Parametrization of the velocityva and positionra in terms ofa

5(n8,l 8,m8),fc , r, and angular momentumL̂.
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sn lm→n8 l 8m8
(cl)

5
1

V E
max(m82D/2,2\Al 8( l 811))

min(m81D/2,1\Al 8( l 811))E
l 8

l 81DE
n8

n81D dsa

dn9dl9dm9
dn9 dl9 dm9, ~8!
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where V'1/D3 is the volume of integration andD is the
binning parameter for Monte Carlo evaluation of the integr
Although details of how bins for the final-state quantu
numbers are defined differ depending on the implementat
D is normally set equal to 1.~In Sec. V we discuss a numer
cal comparison of the two definitions which illuminates th
relationship.! For quantum numbers much larger than 1, t
number differential cross section is likely to vary slowly wi
n8, l 8, andm8. In this limit, the two cross sections are a
proximately equal, because the volume of integration is
actly 1. In this paper, however, we are interested in tran
tions to small values ofn8, l 8, andm8 for which the cross
section varies strongly with these quantum numbers. In
case, the two approaches lead to very different results.
consider the number differential cross section more appro
ate to our concerns because it conserves energy, total an
momentum, and angular momentum projection along
quantization axis. We can therefore use the number diffe
tial cross section to explore the effect of constraining th
observables on a scattering process.

In the next section we reduce the eight-dimensional
tegral of Eq.~7! to a one-dimensional integral by introducin
the transfer functionTa a8(vp ,r ) of Eq. ~3!. The complexity
of the derivation is not reduced significantly by presuppos
a specific mass combination, so no such approximations
made. We encourage readers who are not keen on the d
to skip to the step-by-step implementation algorithm
Sec. IV.

III. DETERMINATION OF THE TRANSFER FUNCTION
AND NUMBER DIFFERENTIAL CROSS SECTION

A. Reduction of the general three-body point
interaction problem to the special case of a core of
infinite mass

The algebra required to determine the transfer funct
Ta a8(vp ,r ) so that the multidimensional integral in Eq.~7!
for the number differential cross section can be reduced
the one-dimensional integral~3! and evaluated is quite in
volved. To render it more tractable, we first invoke the po
contact approximation.1 In this model the core C acts only a
a spectator, so its velocity does not change during
perturber–satellite collision

vc85vc . ~9!

Regarding this equality, note that although the collision
tually does change the core velocity, it does so on a t
scale comparable to the period of the core–satellite rotat
In the point contact approximation, this time scale is mu
longer than that of the perturber–satellite collision. The
fore, the same model within which the interaction occurs
only one point in space allows us to assume that the en
transfer process takes place without changing the core ve
ity. After the collision, the satellite’s new velocity isvs8 . The
l.
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postcollision velocitiesvc and vs8 correspond to the initial
conditions of a different orbit, with altered relative energ
angular momentum,and center-of-mass velocity.

Using the equality~9! and conservation of total linea
momentum, we can recast the general problem of three a
trary massesms , mc , andmx that collide with relative speed
vX into the simpler problem of the collision of a perturber
massmp and speedvp with a satellite of massms that orbits
a stationary core of infinite mass. This derivation exploits
fact that the motion of the core is unaffected by the collisio
We emphasize that no additional approximations are m
by recasting the problem in this way.

In a reference frame in which the center of mass of
CS system is stationary before the collision, the velocitiesvc

andvs are related to their relative velocity

v5vs2vc , ~10a!

by

vs5
mc

mc1ms
v, ~10b!

vc52
ms

mc1ms
v. ~10c!

Clearly, Eqs.~10a!–~10c! are consistent with the use of
reference frame in which the initial center-of-mass veloc
of the core–satellite system is zero

pc1ps5msvs1mcvc ~11a!

5
mcms2mcms

mc1ms
v ~11b!

50. ~11c!

A collision with the perturber rotates the relative velo
ity ur5vs2vX of the perturber and satellite so that the fin
satellite velocity is

vs85vX1
ms

ms1mx
ur1

mx

mx1ms
Ri ur ~12a!

5
mc

mc1ms
Fmsv1mxvp

ms1mx
1

mx

mx1ms
Ri~v2vp!G , ~12b!

whereRi is a rotation matrix, unconstrained by conservati
of energy or angular momentum, that is determined by
dynamics of a single collision. In this equation we have a
introduced the effective perturber velocity

vp5
mc1ms

mc
vX . ~13!
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To evaluate the energy and angular momentum of
final state, it is more useful to know the relative velocity th
the velocity of the satellite alone. Fortunately, because of
spectator assumption of~9!, the relative velocity is easily
obtained as

v85vs82vc ~14a!

5vp1
ms

mp1ms
vr1

mp

mp1ms
Rivr , ~14b!

where we have made the substitutions

vr5v2vp5
mc1ms

ms
~vs2vX!, ~14c!

mp5
mc

2mx

~mc1ms!~mc1ms1mx!
, ~14d!

and

ms5
msmc

ms1mc
. ~14e!

Care must be exercised in using Eq.~14a!. This equation
gives correctly the relative velocity of the satellite and t
core, but the relationship between the relative and satell
core velocitiesafter the collisionis not trivial. In particular,
becausepc1ps5” 0, we cannot use relationships analogous
Eqs.~10b!; i.e.,

vs85”
mc

mc1ms
v8, ~15a!

vc85” 2
ms

mc1ms
v8. ~15b!

Fortunately, the energy and angular momentum of the fi
state depend on the relative velocity, not onvs8 or vc8 .

Because Eq.~14a! is structurally identical to Eq.~12a!,
we can easily transform from the general case of three a
trary masses to a core of infinite mass. The transformatio
made complete by recognizing that neither the relative
ergy of the collision nor the structure of~7! is changed by the
substitution of hypothetical massesms andmp and velocities
v, vp , andvr for the physical massesmc , ms , andmx , and
the physical velocitiesvc , vs , vX , andur . The relative ki-
netic energy becomes

Erel5
1

2

msmx

ms1mx
ur

25
1

2

msmx

ms1mx
~vs2vX!2 ~16a!

5
1

2

msmp

ms1mp
v r

25
1

2

msmp

ms1mp
~v2vp!2, ~16b!

and the number differential cross section~7! becomes

dsa

dn8 dl8 dm8
5

1

vp
E E E d~n82n8@v,r ,V#!

3d~ l 82 l 8@v,r ,V#!d~m82m8@v,r ,V#!

3Pa~v,r !v r S ds

dV i
D dv dr dV i . ~17!
e

e

–

o

al

i-
is
-

This step completes the simplification resulting from t
point contact approximation and conservation of linear m
mentum. From this point on, we assume a satellite of m
ms orbiting a core of infinite mass with velocityv which is
struck by a perturber of massmp moving with a speedvp .
To apply the results of this simplified situation to the gene
case~without approximation!, we merely make the substitu
tions of Eqs.~10!, ~13!, ~14c!, ~14d!, and~14e!.

B. Distribution of the initial velocity and displacement
vectors

To derive an expression for the initial electron probab
ity Pa(v,r ), we first determine r (E,L,Lz ;fL ,fA ,t)
5ra(fL ,fA ,t) and v(E,L,Lz ;fL ,fA ,t)5va(fL ,fA ,t).
The semicolons in the arguments of these quantities sig
that while the values ofE, L, andLz are the same for every
orbit in our ensemble,fL , fA , and t are distributed ran-
domly.

Letting uL andfL be the spherical polar coordinates
L , with

cosuL5
Lz

L
5

m

Al ~ l 11!
, ~18!

we find

ra~fL ,fA ,t !5ra~fL ,fc2f t ,r ! ~19a!

5r ~ t !S cuL cfL cfc2sfL sfc

cuL sfL cfc1cfL sfc

2suL cfc

D , ~19b!

where we have used the shorthand notationscu[cosu and
su[sinu and wherer (t) is the distance of the satellite
from the core C at timet as determined from Newton’s laws
It is significant that the only functional dependence
ra(fL ,fc ,r ) on fA is through the variablefc . BecausefA

is assumed to be uniformly distributed from 0 to 2p, the
distribution of values offc is also uniform.~This is true
even though the distribution off t favors angles close to 0
andp.! It is therefore advantageous to define the direction
the Runge–Lentz vector in terms offc rather thanfA .

To determine the electron velocityva(fL ,fc ,r ), we
first express this quantity in terms of its components para
and perpendicular tora(fL ,fc ,r ), as

va~fL ,fc ,r !5var r̂ i1va' r̂' , ~20a!

where

r̂ i5
ra~fL ,fc ,r !

r
5S cuL cfL cfc2sfL sfc

cuL sfL cfc1cfL sfc

2suL cfc

D , ~20b!

and

r̂'5

raS fL ,fc1
p

2
,r D

r
5S 2cuL cfL sfc2sfL cfc

2cuL sfL sfc1cfL cfc

suL sfc

D .

~20c!
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The perpendicular component ofva(fL ,fc ,r ) is determined
from the angular momentum of the initial state as

L5umsra~fL ,fc ,r !3va~fL ,fc ,r !u ~21a!

5umsr r̂ i3~var r̂ i1va' r̂'!u ~21b!

5msva'rL̂ . ~21c!

From ~21a!, we conclude that this component of the veloc
is

va'5
Al ~ l 11!\

msr
. ~22!

From conservation of energy, we know that speedva

5Avar
2 1va'

2 of the satellite is

va5A2@E~n,l !2V~r !#

ms
, ~23!

so that the radial component of the velocityva is

var5kA2@E~n,l !2V~r !#

ms
2

l ~ l 11!\2

ms
2r 2 . ~24!

In the last expression we introduced the indexk, which is
equal to61 acccordingly as the satellite is receding from
approaching the core:k(t)521 for 0,t,T/2 and k(t)
511 for T/2,t,T. This analysis yields for the electro
velocity the following explicit expression:
r

va~fL ,fc ,r !

5
Al ~ l 11!\

ms r S 2cuL cfL sfc2sfL cfc

2cuL sfL sfc1cfL cfc

suL sfc

D
1kA2@E~n,l !2V~r !#

ms
2

l ~ l 11!\2

ms
2r 2

3S cuL cfL cfc2sfL sfc

cuL sfL cfc1cfL sfc

2suL cfc

D . ~25!

Equations~19a! and ~25! give the position and velocity
of the satellite for initial statea and parametersfL ,fc , and
t. To find the probabilityPa(v,r ), we need only convolve the
uniform distribution functions over these variables wi
Dirac delta functions that enforce Eqs.~19a! and ~25!

Pa~v,r !5
1

4p2TE0

2pE
0

2pE
0

T

d3~r2ra~VL ,fc ,t !!

3d3~v2va~VL ,fc ,t !! dfL dfc dt. ~26!

Considerable effort has been expended in determining
plicit forms of the distribution functionPa(v,r ) for a Ryd-
berg orbital.31 For our purposes, however, the integral for
~26! will suffice, so we need not explicitly evaluate this fun
tion.

C. The transfer function as a one-dimensional
integral over a delta function

We now substitute Eq.~26! for Pa(v,r ) into the defini-
tion ~17! of the number differential cross section. Changi
the order of integration and integrating overv andr , we find
dsa

dn8 dl8 dm8
5

1

4p2T vp
E

0

TE
0

2pE
0

2pE d~n82n8@fL ,fc , r ,k,V i # !d~ l 82 l 8@fL ,fc , r ,k,V i # !

3d~m82m8@fL ,fc , r ,k,V i # !v r S ds

dV i
DdV i dfL dfc dt. ~27!

The factor of 1/4p2T results from the uniformity of the distribution oft, fc , andfL , with values of 1/T, 1/2p, and 1/2p,
respectively.

It is convenient to change the variable of integration from timet to the core–satellite distancer. In so doing, we must take
into account that each value ofr corresponds to two values oft. Dividing the integration overt into two parts—one for the
satellite approaching the core, the other for it receding—we obtain

dsa

dn8 dl8 dm8
5

1

8p2vp
(

k561
E

r mn

r mxE
0

2pE
0

2pE d~n82n8@fL ,fc , r ,k,V i # !d~ l 82 l 8@fL ,fc , r ,k,V i # !

3d~m82m8@fL ,fc , r ,k,V i # !Pa~r ! v r S ds

dV i
D dV i dfL dfc dr, ~28!

where r mn and r mx are the inner and outer classical turning points, respectively, andPa(r ) is the classicalprobability of
finding the electron at a distancer from the core. For the two cases under examination, this classical probability is
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Pa~r !5
2

Ta

1

uvar u
~29a!

55
1

p~n2d l !
3

\3

mse
4A2 l ~ l 11!\2

ms
2 r 2

1
2e2

msr
2

e4

\2~n2d l !
2

Rydberg electron

v0

pA2 l ~ l 11!\2

ms
2 r 2

1
2@\v0~n1 1

2!1b l ~ l 11!#

ms

2v0
2~r 2r 0!2

harmonic oscillator.

~29b!

A semiclassical variant of our model could be obtained by replacing this classical probability by its quantum-mec
counterpart. We shall examine this alternative in Sec. V.

From symmetry arguments, one can see that the integrand of~28! does not depend on the azimuthal anglefL . So we can
reduce the number differential cross section to a four-dimensional integral over three delta functions

dsa

dn8 dl8 dm8
5

1

4pvp
(

k561
E

r mn

r mxE
0

2pE d~n82n8@fc , r ,k,V i # !d~ l 82 l 8@fc , r ,k,V i # !

3d~m82m8@fc , r ,k,V i # ! Pa~r !v r S ds

dV i
D dV i dfc dr. ~30!

We now turn to the remaining integrations. We first evaluate the effect of scattering a satellite with initial velov
5va@fL ,fc , r ,k,V i # at positionr5ra@fL ,fc ,r ,k,V i # by a perturber with velocityvp5vpẑ through scattering anglesV i

5(u i ,f i). The center-of-mass scattering angleu i is unambiguously defined as the angle between the initial relative velo
v2vp and the final relative velocityv82vp8 . We define the azimuthal scattering anglef i to be the dihedral angle between fin
relative velocity and the plane containing bothvp andv2vp . We can then find the final velocity of the electronv8 from the
rotated relative velocity of the collision by applying Eq.~14a!. Fromv8 we can find the final energyE8, magnitude of angular
momentumL8, and component of angular momentum in theẑ directionLz8 as functions offc , r, k, andV i , and in turn, the
final quantum numbersn8, l 8, and m8. Rather than deal with explicit expressions forn8, l 8, and m8, it is ~much! more
convenient to use the related quantities

Dv5
Ea82Ea

\
~31a!

55
mse

4

\3 F 1

2~n2d l !
2 2

1

2~n82d l 8!
2G Rydberg electron

v0~n81 1
2!1

b8

\
l 8~ l 811!2v0~n1 1

2!2
b

\
l ~ l 11! harmonic oscillator,

~31b!
of the
g
Dl5

msr•~va82va!

\
~32a!

5
msr

\ F k8A2@Ea82V~r !#

ms
2

l 8~ l 811!\2

ms
2r 2

2kA2@Ea2V~r !#

ms
2

l ~ l 11!\2

ms
2r 2 G , ~32b!

and

Dm5~m82m!. ~33!
These quantities enable us to separate the dependence
final state onva andra from its dependence on the scatterin
anglesu i andf i , viz.,

S Dv

Dl

Dm
D 5AS sinu i cosf i

sinu i sinf i

cosu i21
D 5AS w2S 0

0

1
D D . ~34!

In this expression, the three-component vectorw is defined
as

w5S sinu i cosf i

sinu i sinf i

cosu i

D . ~35!
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The matrixA depends on the initial experimental conditions, which in this model are described by the variablesmp , ms , r ,
vp , n, l , m, andfc . Specifically, this matrix is given by

A5
mp

ms1mp S 2msvpvar

\
0

ms

ms1mp

msv r
2

\
1

msvp~vaz2vp!

\

ms@~vaz2vp!~r var2z vaz!2z var
2 #

var \

2m v r

var

ms~r var2z vp!

\

m~vaz2vp!

var

msv r~r var2z vaz!

var\
m

D . ~36!
io
or
o
t

-

ch,

o-

c-
The matrixA contains the additional quantities

vaz52va cos~b1fc!sinuL , ~37a!

var5vaA12cos2~b1fc!sin2 uL, ~37b!

z52r sinuL cosfc . ~37c!

The angleuL is the spherical polar angle given by Eq.~18!,
andb is the angle defined by

cosb5
var

va
5kA12

l ~ l 11!\2

2@Ea2V~r !#msr
2
, ~37d!

sinb5A12cos2 b. ~37e!

Operationally, it is useful to express the quantitiesv r , var ,
andm in the matrixA in terms ofvp , va , uL , b, andfc , as

v r5Ava
21vp

212vavpcos~b1fc!sinuL, ~37f!

var5va cosb, ~37g!

m5
msrva

\
cosuL sinb. ~37h!

These substitutions render all the variables inA independent
of one another, an important simplification for the evaluat
of expressions involving this important matrix. Note that f
a forward-scattered satellite, no exchange of momentum
curs between the satellite and perturber. In this case,
vector (wx ,wy ,wz21)5(sinui cosfi , sinui sinfi , cosui

21) vanishes, andDv, Dl, and Dm become zero as re
quired.
n

c-
he

We could, of course, invert Eqs.~31a!, ~32a!, and~33! to
obtain the final quantum numbers. A preferable approa
however, is to change the delta functions from (n8,l 8,m8)
space to (Dv,Dl,Dm) space, as

d~n82n8@fc , r ,k,V i # ! d~ l 82 l 8@fc , r ,k,V i # !

3d~m82m8@fL ,fc , r ,k,V i # !

5d~Dv2Dv@fc , r ,k,V i # ! d~Dl2Dl@fc , r ,k,V i # !

3d~Dm2Dm@fc , r ,k,V i # !
]~Dv,Dl,Dm!

]~n8,l 8,m8!
, ~38!

where the Jacobian is

]~Dv,Dl,Dm!

]~n8,l 8,m8!
5U~ l 81 1

2!\

me r var8

]n8Ea8
\ U

5h
p~ l 81 1

2!\

mer
Pa8~r !. ~39!

The parameterh depends on the periodT8 and energyE8 of
the final state, as

h5UT8 ]n8Ea8
2p\ U. ~40!

For both Kepler orbits and the harmonically bound rigid r
tor, h51.

With this substitution, the number differential cross se
tion becomes
dsa

dn8 dl8 dm8
5

h~ l 81 1
2!\

4msvp
(

k561
E

0

`E E
r mn

r mxE
0

2p

d~Dv2Dv@fc ,r ,k,V i # !d~Dl2Dl@fc ,r ,k,V i # !

3d~Dm2Dm@fc ,r ,k,V i # !d~w8221!Pa~r !Pa8~r !
v r

r S ds

dV i
D 2w82 dfc dr dV i dw8. ~41!

In addition to replacing the delta functions, we have added an integration over a dummy variablew8. Without affecting the
value of the integral, this additional integration allows us to switch from a spherical polar integration overw82 dV i dw8 to a
Cartesian integration with volume elementd3w5dwx dwy dwz . We can then use Eq.~34! to evaluate the integral overd3w,
obtaining
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dsa

dn8 dl8 dm8

5
h~ l 81 1

2!\

2msvp
(

k561
(

k8561
E

r mn

r mxE
0

2p 1

udetAu

3d~w221!Pa~r !Pa8~r !
v r

r S ds

dV i
D dfc dr, ~42!

where w2 is the square magnitude of the vectorw given,
according to Eq.~35!, by

w5A21S Dv

Dl

Dm
D 1S 0

0

1
D . ~43!

The summation overk8 accommodates final states in whic
the satellite either approaches or recedes from the core.
integral can now be recast in the form of Eq.~3! by defining
the transfer function

Ta a8~vp ,r ![
h~ l 81 1

2!\

2ms vp r (
k561

(
k8561

E 1

udetAu
d~w221!

3v r S ds

dV i
D dfc . ~44!

An algorithm for evaluating the integral in~44! is presented
in Sec. IV.

D. The reaction polynomials

The values offc for which the termw221 appears in
the delta function in Eq.~44! are the key to reconstructin
the trajectory of a state-to-state collision that has occurre
a C–S separationr. To obtain such a trajectory fromr, vp ,
(n,l ,m) and (n8,l 8,m8), we first determine the values offc

at which w221 vanishes. From this we find the initial ve
locity v and the displacementr , within an arbitrary rotation
of the system byfL , by applying Eqs.~19a! and ~25!. We
evaluate the scattering anglesV i of the trajectory from Eqs.
~43! and~35!, and then the final velocitiesv8 andvp8 . These
steps narrow the collision to a handful of allowed trajec
ries.

To find the values offc of these trajectories we now
derive an explicit expression forw221. Using Kramer’s rule
to find w from Eq. ~34!, then simplifying the result~exten-
sively!, we obtain

w22155 S mp

mp1ms
D 4 ms

2v r
4

~\ detA!2 G mÞ0 or m8Þ0

S mp

mp1ms
D 4 ms

2v r
4 sin2 fc

~\ detA!2 G0 m5m850,

~45a!

where

detA5@rp~12cos2 fa sin2 uL!1ra sinb sinuL sinfc#

3
~mpms!

3

~mp1ms!
6 S r 2v r

3

\ 3 D . ~45b!
his

at

-

The momenta in this expression are

ra5msva5A2ms@Ea2V~r !#, ~45c!

and

rb5mpvp , ~45d!

and the functionsG(uL ,fc) andG0(uL ,fc) are

G~uL ,fc!5S (
i 50

4

ai~sinuL sinfc!
i D 1sinuL cosfc

3S (
i 50

3

bi~sinuL sinfc!
i D , ~45e!

G0~uL ,fc!5

GS uL5
p

2
,fcD

sin2 fc

5S (
i 50

2

ci sini fcD 1cosfcS (
i 50

1

di sini fcD .

~45f!

Notice thatw221 does not vanish atfc50. Table I contains
the coefficientsai and bi of the function G(uL ,fc) and
Table II the coefficientsci anddi . ProvidedG(uL ,fc) has
no roots in common withudetAu2, the quantityw221 van-
ishes at the zerosfc of G(uL ,fc). We evaluate these zero
as the roots of the eighth-order ‘‘reaction polynomial’’

Rxn~x!5S (
i 50

4

aix
i D 2

2~sin2 uL2x2!S (
i 50

3

bix
i D 2

. ~46a!

For m5m850, the functionG0(uL ,fc) can be expressed a
the series

Rxn
0 ~x!5S (

i 50

2

ci xi D 2

2~12x2!fcS (
i 50

1

di xi D 2

. ~46b!

The roots of Rxn(xi) and Rxn
0 (xi) give the values of

sinuL sinfc for the allowed trajectories for a transitio
(n,l ,m)→(n8,l 8m8). One can determine the correspondi
values offc by evaluatingG(uL ,fc) or G0(uL ,fc) at fc

5arcsin(xi /sinuL) and at fc5p2arcsin(xi /sinuL) and
choosing the angle for whichw221 vanishes. It is then rela
tively straightforward to determine the transfer function fro

Taa8~vp ,r !5Fh~ l 81 1
2!r

2
G (

k561
(

k8561
(
fc,i

1

u]fc
Gu

3UF12cos2 fc sin2 uL

1S ra

rp
D sinb sinuL sinfcS ds

dV i
D GU

fc,i

U . ~47!

For the special casem5m850, the quantityu]fc
Gu should

be replaced with sin2 fcu]fc
G0u.
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TABLE I. Coefficientsai andbi for the evaluation ofG(uL ,fc) andRxn can be generated by multiplying eac
table entry by (r 2ms

2/\3M2).

i ai(\
3M2/r 2ms

2) bi(\
3M 2/r 2ms

2)

0 2 rp
2 r (ms)r cu31@D2 cu2 rp

21r2(M )#\ 22Dlr(M )rp\cu

1 2rarp r(ms2mp)r cu sb12rprasb (Dm21Dl2 cu2)\ 2Dlrp
2rar sb cu2

2
2(rp

2(2 r(ms)2rasb Dm)r cu1mpDv ra
2r 2sb2)

1(D2rp
21Dl2sb2ra

21(Dlcb ra2M r Dv)2)\
2Dlrp(ra

2r sb2

1(M r Dv2Dlracb)\)

3 2rprasb@Dl cb ra r 1r 2(mp2ms)Dv1Dl2\# 2Dl rp
2ra r sb

4 2rp
2r (cb Dlra2r Dv ms)

r(g)5ra(Dm sb1Dl cbcu)2gr Dv cu,
M5mp1ms, cu5cosuL , sb5sinb, cb5cosb, D2[Dl21Dm2
ti

tia

-
rifi
n

f

f

u

or-

d
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-

r-
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-
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lo
ns
1–3

les
IV. SYSTEMATIC EVALUATION OF THE ENERGY
TRANSFER FUNCTION

We present here a step-by-step procedure for evalua
the transfer function Ta,a8 from the initial state a
5(n,l ,m), the final statea5(n8,l 8,m8), the relative veloc-
ity vX between the CS system and the perturberX, the dis-
tancer between the satellite S and core C, the differen
cross sectionds/dV i of the free X–S collision, and the
masses ofmc , ms , and mX of the core, satellite, and per
turber, respectively. We also describe our numerical ve
cation that this algorithm obtains all allowed trajectories a
no false trajectories.

Step 1: Reformulate the scattering problem in terms o
core of infinite mass by calculating the reduced massms of
the satellite–core system from Eq.~14e!, the effective mass
mp of the perturber from~14d!, and the effective relative
speedvp from ~13!.

Step 2: Evaluate the initial speedva from the conserva-
tion of energy equation~23! and the radial component o
velocity from ~24! to within a sign k. Then calculate the
momentara5ms va andrp5mp vp , and the anglesb from
Eqs.~37d! and ~37e!, anduL from Eq. ~18!.

Step 3: Repeat the following steps for each of the fo
possible combinations of signsk561 andk8561.

~3a! EvaluateDv, Dl, andDm from Eqs.~31a!–~33!.
~3b! For m5m850, evaluate the coefficientsci and di

from Table II; for all other combinations ofm andm8, cal-
culateai andbi from Table I.

~3c! If m5m850, find the zeros$xi% of the reaction
polynomial Rxn

0 (x) of Eq. ~46b!. For all other values ofm
andm8, find the zeros$xi% of Rxn(x) defined by Eq.~46a!.
ng

l

-
d

a

r

~3d! Each zeroxi between21 and11 corresponds to
an allowed trajectory of state-changing collision from an
bit with an initial Runge–Lentz vector defined byfc , where
sinuL sinfc5xi . For each xi , first evaluate fc1

5arcsin@xi /sinuL# and fc25p2fc1 . Then, to determine
the allowed trajectories, examine the functionsG0(uL ,fc)
@Eq. ~45f!# for m5m850 or G(uL ,fc) @Eq. ~45e!# for any
other combination ofm andm8. Thus, form5m850, if fc1

corresponds to an allowed trajectory, thenG0(fc1) will
equal zero. If, however,G0(fc1) is nonzero, thenG0(fc2)
will be zero, in which casefc1 corresponds to an allowe
trajectory. Similarly, formÞ0 and/orm8Þ0, if fc1 corre-
sponds to an allowed trajectory, thenG(fc1) will be zero. If
not, thenG(fc2) will be zero, in which casefc1 corre-
sponds to an allowed trajectory. In this manner, determ
the valuesfci for each21<xi<11 that causes the func
tion G(uL ,fc) to become zero.

~3e! Use Eqs.~36! and~37! to evaluate the matrixA for
each value offci . Invert this matrix and evaluate the cente
of-mass scattering anglesu i andf i using Eq.~35!.

Step 4: Use Eq.~47! to evaluate the transfer function.
To verify this algorithm, we examined several cases

‘‘missing trajectories’’ and ‘‘false trajectories.’’ By a miss
ing trajectory we mean an allowed state-changing traject
that is not found from the roots of the reaction polynomia
To test for this possibility, we performed a Monte Car
simulation of scattering events for arbitrary initial conditio
and scattering angles. For each event, following steps
recovered the correct scattering anglesu i andf i , verifying
that this algorithm identifies all allowed trajectories.

By a false trajectory we mean a set of scattering ang
TABLE II. Coefficientsci anddi for the evaluation ofG0(uL ,fc) andRxn
0 can be generated by multiplying

each table entry by (r 2ms
2/\3M2).

i ci(\
3M2/r 2ms

2) di(\
3M2/r 2ms

2)

0
2mp Dv r 2ra

2 sb21@(ra Dl2M r Dv cb)2

1rp
2Dl21M2r 2 Dv2 sb2]\

2Dl rp@ra
2 r sb2

1(M r Dv2ra Dl cb)\]

1 2rp rasb@Dl r ra cb1(mp2ms)r
2 Dv1Dl2\# 2Dl rp

2rar sb

2 2rp
2r (Dl racb2msr Dv)

M5mp1ms, cu5cosuL , sb5sinb, cb5cosb
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determined from steps 1–3 that does not correspond to
allowed state-changing collision. To test for this possibili
we proceeded as follows. As we evaluated the transfer fu
tion Taa8 we used the value offci from steps 1–3 to find the
initial velocity and position of the satellite,ra and va @see
Eqs.~19a! and~20a!#. We then used the scattering anglesu i

andf i from step 3~e! to evaluate the final velocityva8 and
position ra8 of the satellite. In all cases, we verified th
these quantities did in fact correspond to the quantum n
bersn8, l 8, andm8, demonstrating that the algorithm doe
not produce false trajectories.

V. RESULTS FOR CA–HE COLLISIONS

Transfer functionsTa,a8 for the Ca–He scattering pro
cess~1! are shown as a function of the Ca–He velocityvX

and the distancer from the Ca1 core to the Rydberg electro
in Fig. 3. This transition can occur at any of the values ofvX

and r shown, but the cross section is dominated by tran
tions either close to the core or at one or two discr
electron–core distances. It is perhaps not surprising tha
severely constrained a scattering process is dominated
few orbits. More surprising are the spikes that modul
these transition ‘‘ridges.’’ These spikes are not those see
the quantum impulse or time-dependent semiclassical re
of Fig. 1; the latter shows only relatively gentle oscillatio
arising from purely quantum-mechanical interferen
phenomena.3

Convolution of the transfer function with initial and fina
radial probability functions for the Rydberg electron yiel
the number differential cross section. This raises the ques
of whether to use the classical radial distributionPa(r )
52/Tuvar u or its quantum-mechanical counterpart in the
calculations. The differences between these distribu
functions~see Fig. 2 of Ref. 31! suggest that they may yiel
qualitatively different cross sections.

To completely isolate the effects of quantizing the init
and final energy and the angular momentum from all ot
quantum-mechanical features, one would use the clas
radial distribution. If, however, one seeks a more realis
model—e.g., for comparison to quantal calculations or
perimental data—then one may prefer to use the quant
mechanical radial probability density. In either case, once
transfer function has been calculated, cross sections are
ily obtained. Figure 4 compares the number differential cr
sections to the quantal results of Isaacs and Morrison2 for
classical and quantum-mechanical radial functions, resp
tively. For this scattering process, the two sets of cross
tions are similar enough that either can be used to qua
tively interpret certain aspects of the quantal results. T
small-scale structures and the occasional narrow spikes
both artifices of the classical model.

In Sec. II we noted the relationship between our num
differential cross section and the conventional classical c
section, Eq.~8!. To clarify this relationship, we have evalu
ated the right-hand side of this equation using Monte Ca
integration with varying bin sizesD. In Fig. 5 we compare
these cross sections as a function ofD for the m50→m8
50 transition. As this parameter decreases, the cross
tions change dramatically. Apart from the~spurious! spikes
an
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in the number differential cross section, the cross section
small bin sizes agrees with the number differential cross s
tion far better than does the result forD51. ~As these results
were generated with completely different algorithms a
computer codes, they also verify that in the limitD→0 the
classical trajectory and number differential cross secti
agree, thereby confirming the latter calculation.! As dis-
cussed elsewhere in this paper, the spikes in the cross se
for small D arise from constraints on the scattering proce
in our classical model.

Considering the nature of the process we are trying
model, thequantitativedisagreements between our numb
differential cross sections and the quantum-mechanical
pulse results are not surprising. We consider two feature
the comparison in these figures to be significant. First,
overall agreement in magnitude between the classical
quantal cross sections validates using large-scale feature
the classical cross sections to qualitatively interpret lar
scale features of the quantal results. Second, the clear p
ence of alignment phenomena in the classical cross sec
~the partial magnetic sublevel cross sections for differentumu
are not equal! supports an interpretation of these phenome
based on the present classical model.

Although them50→m850 cross section exhibits sig
nificantly more structure than the other state-to-state cr
sections, the difference in transfer functions between
various transitions is less remarkable. The transfer func
for eachm→m8 transition is nonzero at the outer classic
turning point, but form50→m850, particularly strong fea-
tures appear in this distant region. Because these feat
correspond to positions where the classical radial probab
distribution is infinite and the quantum radial probability
large, they dramatically affect the number differential cro
sections.

Although we originally developed this model to stud
the qualitative dependence of these cross sections on rel
velocity, it can also be used to estimate quickly the cro
section for a scattering process interest and to determ
whether a particular process will be most sensitive to co
sions that happen close to or far from the core. We caut
however, against using it for quantitative predictions. To
lustrate, we show the total cross section for the 17d→18p
transition in Fig. 6. While both the quantum and numb
differential calculations predictqualitatively similar depen-
dence on relative speed, the quantum cross section is rou
a factor of 2 stronger and does not display the~spurious!
spikes that appear in the classical cross section. Nor doe
classical model invariably predict the relative strength
alignment effects at a particular relative velocity, as is e
dent from the state-to-state cross sections in Fig. 7. A
shown in Fig. 7 is the relative Ca–He velocity distributio
for an experiment analogous to those Spainet al. performed
on Ca–Xe scattering.14 For such agedanken experiment, the
quantal cross sections2 predict s0(v)537a0

2, s1(v)
567a0

2, and s2(v)550a0
2, while the appropriately aver

aged number differential cross sections ares0(v)545a0
2,

s1(v)529a0
2, ands2(v)531a0

2.
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VI. CONCLUSIONS

The classical model described in Secs. II and III a
schematized in the procedure of Sec. IV yields the num
differential cross section defined in Eq.~7! ~in the point con-
tact approximation! in terms of the transfer function of Eq
~44!. On can use the step-by-step algorithm in Sec. IV
determine this function from the masses of the core, sate
and perturber, and the differential cross section for ela
scattering of the satellite by the perturber. These calc
tions, and subsequent evaluation of the number differen
cross section, can be performed in short order usingMATH-

EMATICA on a personal computer.~Readers interested in us
ing this algorithm can download aMATHEMATICA notebook
and accompanying package from one of the authors’ w
sites.36! One can use the results to estimate the magnitude
state-to-state cross sections and to quantify the effect of
straining the initial and final state on the distance betw
the core and satellite during energy transfer.

The transfer functions for the 17d→18p transitions in
Ca–He scattering reveal discrete regions in phase space
dominate this process. The highly structured dependenc
the transfer function on scattering angle leads to consider
small-scale structure~and the occasional spike! in the num-

FIG. 3. Surface plots of the transfer functionTa,a8(vp ,r ) for the 17d
→18p transition in Ca–He collisions. This function, plotted on the vertic
axis, ranges from 0.0 to 1.03105 a0

3. @The transfer functions for (n,l ,m)
→(n8,l 8,m8) are rigorously equal to those for (n,l ,2m)→(n8,l 8,2m8)
and are equal to graphical accuracy to those for (n,l ,m)→(n8,l 8,2m8) and
for (n,l ,2m)→(n8,l 8,m8). Hence, we do not show these cases.#
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FIG. 4. Comparison of classical and quantum-mechanical state-to-
cross sections for 17d→18p transitions in Ca–He scattering. Thin soli
line: classical results calculated from the classical radial probability dis
bution. Dotted line: classical calculations based on the quantum-mecha
radial probability density in the convolution integral of Eq.~3!. Thick solid
line: quantum-mechanical results of Isaacs and Morrison~Ref. 2!. Dashed
line: cross sections from a classical trajectory calculation of the right-h
side of Eq.~8! with D51.0.

FIG. 5. Classical state-to-state cross sections for the 17d→18p transition in
Ca–He scattering forumu50→um8u50. Light dotted line: the number dif-
ferential cross section defined by Eq.~7!. Also shown are cross section
from an independent, Monte Carlo classical trajectory calculation of
right-hand side of Eq.~8!: D51 ~thick solid line!, D50.5 ~heavy dotted
line!, andD50.1 ~regular solid line!.
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ber differential cross sections. These arise purely from p
tulating quantization of the initial- and final-state energy, a
gular momentum, and projection of the angular moment
on an axis coincident with the initial relative velocity. W
emphasize again that these structures are not those o
quantal cross sections, which arise from quantu
mechanical interference.3 Nor are they conventional scatte
ing resonances. From the classical point of view, these st
tures are expected, as a consequence of the sharp oscilla
in the state-to-state transition probabilities as a function
the relative collision speed and the core–satellite distance
a conventional semiclassical treatment such as that of M
rison et al.,3 the uncertainty principle blurs simultaneou
specification of the relative speed and distance, smooth
out these structures.

The model results in Sec. V show that alignment ph
nomena in collisions of rare-gas atoms with aligned Rydb
atoms arises from the constraints imposed on the collision
conservation of energy and angular momentum. In a fut
publication, we intend to apply the present model to m
conventional heavy-particle scattering problems using
model of a harmonically bound rigid rotor using results th
appear in this paper.
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FIG. 6. Total cross sections for 17d→18p transitions in Ca–He scattering
Solid line: the classical number differential cross section. Dotted line:
quantum-mechanical results of Isaacs and Morrison~Ref. 2!.
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APPENDIX: DERIVATION OF THE NUMBER
DIFFERENTIAL CROSS SECTION FROM THE
BOLTZMANN TRANSPORT EQUATION

We assume without loss of generality that the masse
the cores are much greater than those of any other part
in the system~see Sec. III A!. Then, a classical state of th
system can be described by the distribution functio
$F(r s ,vs),G(Rp ,vp)%, whereF(r s ,vs) refers to satellite po-
sitions and velocities with respect to the~stationary! core and
G(Rp ,vp) refers to perturber positions and velocities wi
respect to the origin of a laboratory-fixed frame. Bolt
mann’s transport theory then gives the time-dependent e
lution of the system due to core–perturber collisions in ter
of the coupled set of integral-differential equations

]F~r s ,vs8!

]t
52

]r s8
]t

]F~r s ,vs8!

]r s
2

]vs8
]t

]F~r s ,vs8!

]vs8

1E E ur S ds

dV i
D @F~r s ,vs@vs8 ,vp8 ,V i # !

3G~Rp ,vp@vs8 ,vp8 ,V i # !#

2F~r s ,vs8!G~Rp ,vp8!% dV i dvp8 , ~A1a!

]G~Rp ,vp8!

]t
52

]Rp

]t

]G~Rp ,vp8!

]Rp8
1E E ur S ds

dV i
D

3$F~r s ,vs@vs8 ,vp8 ,V i # !

3G~Rp ,vp@vs8 ,vp8 ,V i # !%

2$F~r s ,vs8!G~Rp ,vp8!% dV i dvs8 . ~A1b!

The first two terms on the right-hand side of~A1a! describe
the evolution of the classical distribution functionF(r s ,vs8)
as the satellites move in their orbits without undergoing c
lisions. The integral term is the contribution to the evoluti
of F(r s ,vs8) from satellite–perturber collisions. The vecto
functionsvs@vs8 ,vp8 ,V i # andvp@vs8 ,vp8 ,V i # are the initial ve-
locities for a satellite and perturber that scatter through an
V i to produce final velocitiesvs8 andvp8 .

In an ideal scattering experiment, we study the format
of the final state a very short time after creation of a we
defined initial state represented by$F(r s ,vs),G(Rp ,vp)%
5$ f a(r s ,vs),g0(Rp ,vp)%. Because we are interested in e
periments in which a very small fraction of the perturbe
and satellites collide before a measurement is made, we
sume the perturber distribution function is unchanging, i.

e

d
er
-

r

FIG. 7. Partial magnetic sublevel cross sectionss umu(v)
for 17d→18p transitions in Ca–He scattering. Soli
line: cross sections calculated from classical numb
differential cross sections. Dotted line: quantum
mechanical results of Isaacs and Morrison~Ref. 2!.
Dashed line: a typical relative velocity distribution fo
scattering experiments such as those of Ref. 25.
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G~Rp ,vp!5g0~Rp ,vp!5npd~vp2vp,beam!. ~A2!

Here,np is the number density of perturbers andvp,beam is
the velocity of an experimentally prepared beam.~The sub-
script ‘‘beam’’ appearing in this Appendix has been su
pressed in the body of this paper.! Using this substitution and

F~r s ,vs!5 f a~r s ,vs!1 f ~r s ,vs!, ~A3!

the Boltzmann equation becomes

] f ~r s ,vs8!

]t
52

]r s

]t

] f ~r s ,vs8!

]r s
2

]vs8
]t

] f ~r s ,vs8!

]vs8

1E E ur S ds

dV i
D @ f ~r s ,vs[vs8 ,vp8 ,V i ])

3g0~Rp ,vp@vs8 ,vp8 ,V i # !

2 f a~r ,vs8!g0~Rp ,vp8!# dV i dvp8 . ~A4!

In Eq. ~A4! we have assumed that the initial CS statef a

satisfies the steady-state condition

]r s

]t

] f a~r s ,vs!

]r s
1

]vs

]t

] f a~r s ,vs!

]vs
50. ~A5!

The integral term in Eq.~A4! consists of a positive con
tribution from collisions that scatter into final state (r s ,vs8)
and a negative contribution from collisions that scatter fr
initial state (r s ,vs8). Because we are interested in the creat
of a new CS state, we evaluate the functionf at values ofr s

and vs8 that correspond to an energy or angular moment
which is different from that of the initial statea. So, we may
assumef a(r s ,vs8)50, where

] f ~r s ,vs8!

]t
52

]r s

]t

] f ~r s ,vs8!

]r s
2

]vs8

]t

] f ~r s ,vs8!

]vs8

1E E ur S ds

dV i
D f a~r s ,vs@vs8 ,vp8 ,V i # !

3g0~Rp ,vp@vs8 ,vp8 ,V i # ! dV i dvp8 . ~A6!

We now introduce delta functions over two new variables
integration,vp andvs , to obtain

] f ~r s ,vs8!

]t
1

]r s

]t

] f ~r s ,vs
8!

]r s
1

]vs
8

]t

] f ~r s ,vs
8!

]vs
8

5E E E E ur S ds

dV i
D f a~r s,vs!g0~Rp,vp!

3d3~vs2vs@vs8,vp8,V i # ! d3~vp2vp@vs8,vp8,V i # !

3dV i dvp8 dvp dvs . ~A7!

Because the Jacobian of a translation followed by rotatio
unity

]~vs ,vp!

]~vs8 ,vp8!
51, ~A8!

the product of delta functions in Eq.~A7! can be written
-

n

f

is

d3~vs2vs@vs8 ,vp8 ,V i # ! d3~vp2vp@vs8 ,vp8 ,V i # !

5d3~vs82vs8@vs ,vp ,V i # ! d3~vp82vp8@vs ,vp ,V i # ! . ~A9!

By substituting Eqs.~A2! and ~A9! into the right-hand side
of Eq. ~A7! and integrating overvp andvp8 , one finds the rate
G(r s ,vs8) at which satellites are scattered into new orb
with positionsr s and velocitiesvs8 , viz.

G~r s ,vs8!5
] f ~r s ,vs8!

]t
1

]r s

]t

] f ~r s ,vs
8!

]r s
1

]vs
8

]t

] f ~r s ,vs
8!

]vs
8

~A10a!

5npE E E ur S ds

dV i
D f a~r s ,vs!

3d3~vs82vs8@vs ,vp,beam,V i # ! dV i dvs . ~A10b!

The function G(r s ,vs8) can be convolved with the delta
function probability distribution for a satellite described b
r s and vs8 having quantum numbersn8, l 8, andm8 to pro-
duce the rate at which final states are formed

Gn8 l 8m85E G~r s ,vs8!d~n82n8@r s ,vs ,vp,beam,V i # !

3d~ l 82 l 8@r s ,vs ,vp,beam,V i # !

3d~m82m8@r s ,vs ,vp,beam,V i # ! dr s dvs8 ~A11a!

5npnCSE E E ur S ds

dV i
D Pa~vs ,r s!

3d~n82n8@r s ,vs ,vp,beam,V i # !

3d~ l 82 l 8@r s ,vs ,vp,beam,V i # !

3d~m82m8@r s ,vs ,vp,beam,V i # ! dV i dr s dvs
~A11b!

5vp np nCS

dsa

dn8 dl8 dm8
. ~A11c!

In Eq. ~A11b! we switched from the distribution function
f a(r s ,vs), which is normalized to the total number of sate
lites per unit volume, to the classical distributionPa(vs ,r s),
where

f a~r s ,vs!5nCSPa~vs ,r s! ~A12a!

and

E Pa~vs ,r s! dr s dvs51. ~A12b!

Equation~7! follows immediately from Eq.~A11c!.
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